STORMWATER REPORT

FOR

MALLARD LANE

ΙN

BOLTON, MASSACHUSETTS

PREPARED BY: DILLIS & ROY

CIVIL DESIGN GROUP, INC. 1 MAIN STREET, SUITE 1 LUNENBURG, MA 01462

PREPARED FOR: JAMES MORIN

307 Central Street, Apt. 331

Bolton, MA

DECEMBER 1ST, 2021 REV. FEBRUARY 28, 2022

DDCDG PROJECT # 5293

TABLE OF CONTENTS:

1.0 I TOJECE MAITALIN	1.0	Project Narrativ
-----------------------	-----	------------------

	1.1	Project Type	£
	1.2	Purpose and Scope	3
	1.3	Proposed Development	
	1.4	LID Measures	
	1.5	Site Description	
	1.6	Proposed Stormwater Management System	4
	1.7	Method of Analysis	
2.0	Storn	nwater Standards Compliance	
	2.1	Standard 1 – Untreated Discharges	<i>6</i>
	2.2	Standard 2 – Peak Rate Attenuation	
	2.3	Standard 3 – Recharge	
	2.4	Standard 4 – Water Quality	
	2.5	Standard 5 – Land Uses with Higher Pollutant Loads	7
	2.6	Standard 6 – Critical Areas	7
	2.7	Standard 7 – Redevelopment	
	2.8	Standard 8 – Construction Period Pollution Prevention	
		and Erosion and Sediment Control	8
	2.9	Standard 9 – Operation and Maintenance Plan	
	2.10	Standard 10 – Prohibition of Illicit Discharges	

3.0 Appendices

Appendix A – Locus Map

Appendix B – Checklist for Stormwater Report

Appendix C – NRCS Soils Data

Appendix D – Existing Conditions Hydrologic Calculations

Appendix E – Proposed Conditions Hydrologic Calculations

 $Appendix \ F-Recharge\ /\ WQV\ /\ TSS\ Removal\ Calculations$

Appendix G – Operation & Maintenance Plan

Appendix H – Long Term Pollution Prevention Plan

Attachments

Pre-development Watershed Plan Post-development Watershed Plan

1.0 Project Narrative

1.1 Project Type

The proposed project includes the development of 8 age restricted homes with an associated road and cul-de-sac. The homes will all be connected to a shared septic system and there will be a proposed well on site.

1.2 Purpose and Scope

This report has been prepared to comply with the requirements of the Stormwater Management Standards incorporated in the Massachusetts Wetlands Protection Act Regulations, 310 CMR 10.00. These standards are intended to promote increased groundwater recharge and prevent stormwater discharges from causing or contributing to the pollution of surface waters and ground waters of the Commonwealth. The standards aim to accomplish these goals by encouraging the greater use of low impact development techniques and improving the operation and maintenance of stormwater best management practices.

This report addresses compliance of the proposed development with each of the ten stormwater standards, it provides calculations to support the compliance information, and it provides a Long-Term Pollution Prevention Plan and an Operation and Maintenance Plan for the stormwater management system.

1.3 Proposed Development

As mentioned, the proposed project is an 8 house development with an associated road and cul-de-sac. The project will be filed under a comprehensive permit plan.

The proposed road will have access off the south side of South Bolton Road approximately 670 feet from the intersection with Spectacle Hill Road. All proposed houses will be connected to a shared septic system and will get water from proposed individual wells on site.

1.4 LID Measures

Care has been taken to lay out the proposed site in a manner that works with existing topography. BMPs such as infiltration chambers are used to manage the stormwater runoff. Stormwater from the impervious areas of the proposed lots are routed via storm drains to the infiltration chambers which contains a sediment forebay for pretreatment. The infiltration chambers will be used to promote groundwater recharge and limit the runoff leaving the site

1.5 Site Description

The subject site is found on the south side of South Bolton Road in Bolton

Massachusetts. The site currently vacant and has a gravel driveway that provides access to the property. The site is located on Parcel 002.C-0015.1 and is approximately 5.0 acres. There is one bordering vegetated wetland north of the site across South Bolton Road and one on the abutting property east of the site.

The general topography of the site slopes from south to north/north east towards the offsite wetlands. There are steep slopes along the southern property line. The site is mostly wooded except for the location of the gravel driveway.

The property was previously used as a gravel pit, so the majority of the site consists of gravel material. The NRCS soil survey information indicates that most of the site is underlain with gravel, chatfield-hollis-rock, Hinckley loamy sand and canton fine sandy loam. These soils fall under the Hydrologic Soil Group A, B and D and are delineated on the Pre-Development and Post-Development drainage maps. On site soil testing confirmed the NRCS Soil Survey Data.

Proposed Stormwater Management System

Runoff from the proposed impervious areas will be conveyed and treated through a combination of BMP's and infiltrated to the groundwater. The infiltration will help to recharge the groundwater and ensure that post-development runoff rates will not exceed the pre-development rates. The following is a brief discussion of each conveyance and treatment BMP proposed.

Deep Sump Hooded Catch Basins

Deep sump hooded catch basins are proposed to convey the runoff from the proposed paved areas and roofs to the infiltration basin. These catch basins will discharge to manholes and conventional storm drains.

Infiltration Basin

A infiltration basin is proposed at the of the site. The basin which will be equipped with a sediment forebay, will collect the runoff from the roofs and pavement after pretreatment in the deep sump hooded catch basins. The infiltration basin will recharge the runoff from the 100-year storm which an emergency overflow weir for larger storm events.

Subsurface Infiltration System

Subsurface infiltration systems are included at the entrance of the site and under the cul-de-sac. Cultec prefabricated chambers, models R-180HD and R-902HD, will be installed to collect the runoff from the roofs and pavement after pretreatment in the deep sump hooded catch basins. The infiltration systems will provide groundwater recharge as well.

1.6 Methods of Analysis

United States Department of Agriculture Natural Resources Conservation Service (NRCS) soil cover complex methods (TR-20) were employed to compute runoff quantities for the subject property. HydroCAD 10.10-3a computer software was employed in this hydrologic analysis. A comparison of pre- and post-development runoff quantities at various analysis points downstream around the site was performed in order to design a stormwater management system that will limit peak rates of runoff from the development to predevelopment levels for 24-hour rainfall events of 2-, 10-, 25- and 100-year return frequencies. Watershed boundaries for existing conditions are depicted on the attached Pre-development Watershed Plan. Post-Developed watershed boundaries are indicated on the Post-Development Watershed Plan.

Stormwater runoff drains in two directions off the site: over the northern property line onto South Bolton Road and over the eastern property line into the wetlands on the abutting property. Therefore, two design points were used in the comparison of pre- and post-developed peak runoff rates.

2.0 Stormwater Standards Compliance

2.1 Standard 1 – Untreated Discharges (fully met)

The stormwater management system for the proposed development will not result in any new discharges of untreated stormwater to wetland resource areas. The stormwater management system has been designed such that there is no erosion or scour to wetland resource areas or waters of the Commonwealth.

2.2 Standard 2 – Peak Rate Attenuation (fully met)

The stormwater management system for the proposed development will employ subsurface and conventional infiltration systems that have been sized to retain and recharge the runoff related to a 100-year, 24-hour rainfall event.

Hydrologic calculations for existing and proposed site conditions are included in Appendices D and E respectively. Calculations for 24-hour rainfall events of 2-, 10-, 25- and 100-year return frequencies are provided. The following table provides a summary of peak rates of runoff related to each of these storms for each of the design points. For all rainfall events considered, the proposed stormwater management system will control runoff from the development such that corresponding peak flows at the design point will not exceed predevelopment levels.

Table 1: DP-A Peak Runoff Rates

	Pre-Developed	Post-Develpment
2-year	0.00 cfs	0.00 cfs
10-year	0.15 cfs	0.02 cfs
25-year	0.42 cfs	0.05 cfs
100-year	1.22 cfs	0.16 cfs

Table 2: DP-B Peak Runoff Rates

	Pre-Developed	Post-Development
2-year	0.03 cfs	0.00 cfs
10-year	0.71 cfs	0.67 cfs
25-year	2.00 cfs	1.16 cfs
100-year	4.90 cfs	4.60 cfs

Since the Post-Development peak flow rates are less than the Pre-Development flow rates, we can determine that there will be no increase to off-site flooding during any rainfall event.

2.1 Standard 3 – Recharge (fully met)

As discussed in the Introduction, Natural Resource Conservation Service data indicates that the areas within the proposed development consist of soils from Hydrologic group A, B and D.

The subsurface infiltration systems have been designed to provide the required recharge and water quality volumes. They will provide groundwater recharge across the site which will create optimal conditions for the adjacent wetlands. Recharge calculations can be found in Appendix F.

2.2 Standard 4 – Water Quality (fully met)

A total of 85% TSS removal was achieved using BMPs. As part of the proposed project, infiltration requires a minimum of 44% TSS removal provided prior to discharge. Two TSS calculation sheets have been provided. A calculation sheet showing a deep sump catch basin into a sediment forebay shows proper pretreatment before entering the infiltration chambers. The isolator row within the infiltration chambers will act as the sediment forebay. The calculation sheet showing a deep sump catch basin into a subsurface infiltration structure shows there is enough TSS removal within the whole system. See Appendix F for detailed calculations.

2.3 Standard 5 – Land Uses with Higher Pollutant Loads (not applicable)

The current and proposed uses of the subject site do not constitute land use with higher potential pollutant load, thus Standard 5 does not apply to the proposed project.

2.4 Standard 6 – Critical Areas (not applicable)

The proposed project does not involve a stormwater discharge within or near to any of the areas defined as "Critical Areas" at 314 CMR 9.02 and 310 CMR 10.04.

2.5 Standard 7 – Redevelopment (not applicable)

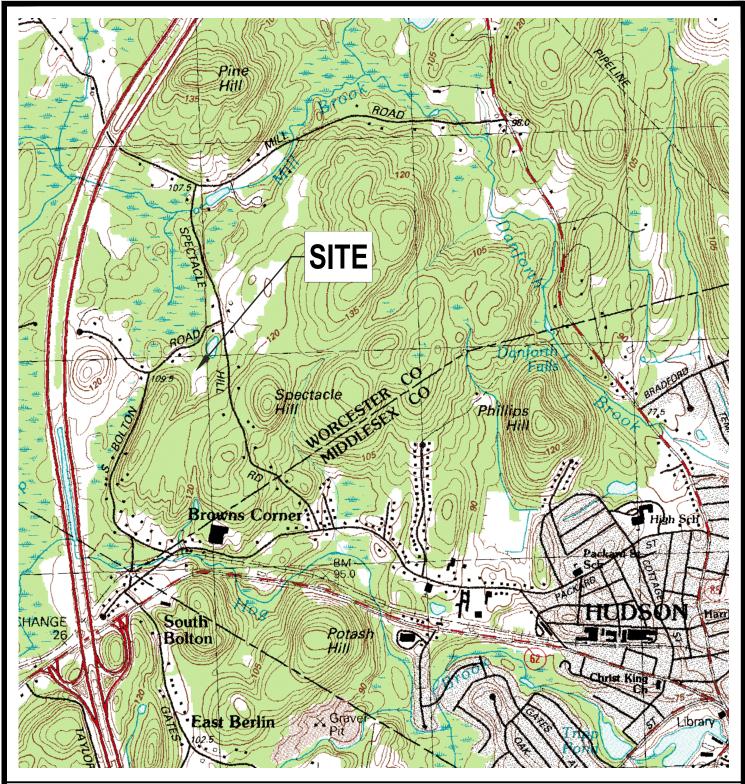
The proposed project is not categorized as a redevelopment, therefore Standard 7 does not apply.

2.6 Standard 8 – Construction Period Pollution Prevention and Erosion and Sediment Control (to be submitted at a later date)

The project is subject to the filing of an Environmental Protection Agency Notice of Intent (EPA NOI), therefore, a Stormwater Pollution Prevention Plan (SWPPP) will be prepared prior to construction. This document will be prepared to satisfy

the requirements of the EPA NOI and the Standard 8 Construction Period Pollution prevention and Erosion and Sedimentation Control Plan.

2.7 Standard 9 – Operation and Maintenance Plan (fully met)


Refer to Appendix H for a complete copy of the Stormwater Operation and Maintenance Plan.

2.8 Standard 10 – Prohibition of Illicit Discharges (to be submitted at a later date)

An illicit discharge statement will be prepared after approvals are received and prior to construction.

APPENDIX A

Locus Map

LOCUS MAP

Prepared By: Dillis & Roy, Civil Design Group, Inc.

1 Main Street, Suite 1

Lunenburg, Massachusetts 01462

Prepared For: James Morin

307 Central Street, Apt. 331 Bolton, Massachusetts

SCALE: 1" = 800'

DATE: FEBRUARY 28, 2022

CIVIL ENGINEERS LAND SURVEYORS 1 MAIN STREET, SUITE 1 LUNENBURG, MA 01462 WETLAND CONSULTANTS
PHONE: (978) 779-6091
www.dillisandroy.com

APPENDIX B

Checklist for Stormwater Report

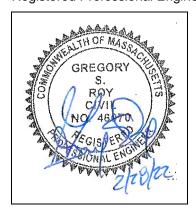
Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?			
	New development		
	Redevelopment	(Although the project is considered redevelopment, it meets all of the Standards below)	
	Mix of New Develo	opment and Redevelopment	

Checklist for Stormwater Report

Checklist (continued)

env	environmentally sensitive design and LID Techniques were considered during the planning and design of the project:				
	No disturbance to any Wetland Resource Areas				
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)				
	Reduced Impervious Area (Redevelopment Only)				
	Minimizing disturbance to existing trees and shrubs				
	LID Site Design Credit Requested:				
	☐ Credit 1				
	☐ Credit 2				
	☐ Credit 3				
	Use of "country drainage" versus curb and gutter conveyance and pipe				
	Bioretention Cells (includes Rain Gardens)				
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)				
	Treebox Filter				
	Water Quality Swale				
	Grass Channel				
	Green Roof				
	Other (describe):				
Sta	ndard 1: No New Untreated Discharges				
	No new untreated discharges				
	Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth				
	$\label{thm:continuous} \textbf{Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.}$				

Checklist for Stormwater Report

Cr	necklist (continu	ued)			
Sta	ındard 2: Peak Rat	e Attenuation			
	Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding. Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.				
	Calculations provided to show that post-development peak discharge rates do not exceed pre- development rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24- hour storm.				
Sta	ındard 3: Recharge				
	Soil Analysis provid	led.			
	Required Recharge Volume calculation provided.				
	Required Recharge	volume reduced through use of	the LID site Design Credits.		
	Sizing the infiltration	n, BMPs is based on the followin	g method: Check the method used.		
	Static	☐ Simple Dynamic	☐ Dynamic Field ¹		
	Runoff from all impe	ervious areas at the site dischar	ging to the infiltration BMP.		
	are provided showing		scharging to the infiltration BMP and calculations uting runoff to the infiltration BMPs is sufficient to		
	Recharge BMPs ha	ive been sized to infiltrate the Re	equired Recharge Volume.		
	Recharge BMPs have been sized to infiltrate the Required Recharge Volume <i>only</i> to the maximum extent practicable for the following reason:				
	☐ Site is comprise	ed solely of C and D soils and/or	bedrock at the land surface		
	☐ M.G.L. c. 21E sites pursuant to 310 CMR 40.0000				
	☐ Solid Waste La	ndfill pursuant to 310 CMR 19.0	00		
	Project is other practicable.	wise subject to Stormwater Man	agement Standards only to the maximum extent		
	Calculations showing	ng that the infiltration BMPs will o	drain in 72 hours are provided.		
	Property includes a	M.G.L. c. 21E site or a solid wa	ste landfill and a mounding analysis is included.		

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Checklist for Stormwater Report

Cł	necklist (continued)
Sta	ndard 3: Recharge (continued)
	The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10-year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
	Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.
Sta	ndard 4: Water Quality
The • • • • • • • • • • • • • • • • • • •	E Long-Term Pollution Prevention Plan typically includes the following: Good housekeeping practices; Provisions for storing materials and waste products inside or under cover; Vehicle washing controls; Requirements for routine inspections and maintenance of stormwater BMPs; Spill prevention and response plans; Provisions for maintenance of lawns, gardens, and other landscaped areas; Requirements for storage and use of fertilizers, herbicides, and pesticides; Pet waste management provisions; Provisions for operation and management of septic systems; Provisions for solid waste management; Snow disposal and plowing plans relative to Wetland Resource Areas; Winter Road Salt and/or Sand Use and Storage restrictions; Street sweeping schedules; Provisions for prevention of illicit discharges to the stormwater management system; Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL; Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan; List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
	A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent. Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
	is within the Zone II or Interim Wellhead Protection Area
	is near or to other critical areas
	is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
	involves runoff from land uses with higher potential pollutant loads.
	The Required Water Quality Volume is reduced through use of the LID site Design Credits.

☐ Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if

applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist for Stormwater Report

Checklist (co	ontinued)					
Standard 4: Water Quality (continued)						
☐ The BMP is si	zed (and calculations provided) based on:					
☐ The ½" or	1" Water Quality Volume or					
	alent flow rate associated with the Water Quality Volume and documentation is showing that the BMP treats the required water quality volume.					
BMP and prop propriety BMP and submitting	proposes to use proprietary BMPs, and documentation supporting use of proprietary bosed TSS removal rate is provided. This documentation may be in the form of the checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook g copies of the TARP Report, STEP Report, and/or other third party studies verifying of the proprietary BMPs.					
	s that indicates a need to reduce pollutants other than TSS and documentation showing selected are consistent with the TMDL is provided.					
Standard 5: Land	Uses With Higher Potential Pollutant Loads (LUHPPLs)					
Prevention Pla The NPDES M	Multi-Sector General Permit covers the land use and the Stormwater Pollution an (SWPPP) has been included with the Stormwater Report. Multi-Sector General Permit covers the land use and the SWPPP will be submitted prior					
	ge of stormwater to the post-construction stormwater BMPs. Multi-Sector General Permit does <i>not</i> cover the land use.					
LUHPPLs are measures hav	located at the site and industry specific source control and pollution prevention e been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow if, and been included in the long term Pollution Prevention Plan.					
☐ All exposure h	as been eliminated.					
☐ All exposure h	as <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.					
grease (e.g. al	has the potential to generate runoff with moderate to higher concentrations of oil and II parking lots with >1000 vehicle trips per day) and the treatment train includes an oil a filtering bioretention area, a sand filter or equivalent.					
Standard 6: Critic	cal Areas					
	is near or to a critical area and the treatment train includes only BMPs that MassDEP for stormwater discharges to or near that particular class of critical area.					
Critical areas	and BMPs are identified in the Stormwater Report.					

Checklist for Stormwater Report

Checklist (continued)

	,
	andard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum tent practicable The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
	Limited Project
	 Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area. Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
	☐ Bike Path and/or Foot Path
	Redevelopment Project
	Redevelopment portion of mix of new and redevelopment.
	Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report. The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.
Sta	andard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control
	Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the owing information:
	 Narrative; Construction Period Operation and Maintenance Plan; Names of Persons or Entity Responsible for Plan Compliance; Construction Period Pollution Prevention Measures; Erosion and Sedimentation Control Plan Drawings; Detail drawings and specifications for erosion control BMPs, including sizing calculations; Vegetation Planning; Site Development Plan; Construction Sequencing Plan; Sequencing of Frosion and Sedimentation Controls;

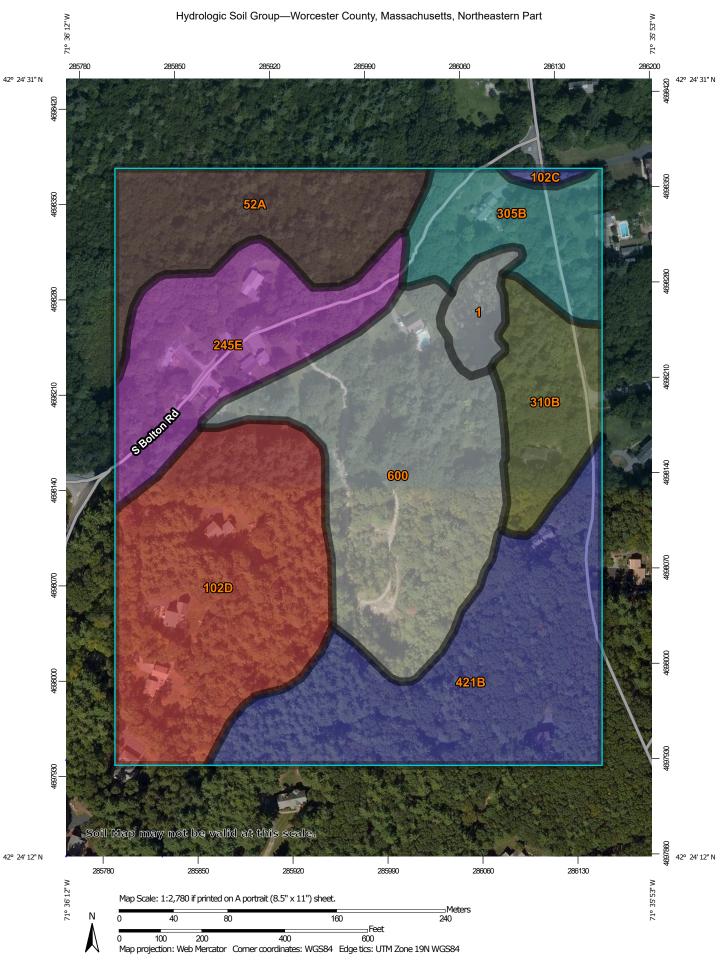
Operation and Maintenance of Erosion and Sedimentation Controls;

the information set forth above has been included in the Stormwater Report.

☐ A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing

Inspection Schedule; Maintenance Schedule;

Inspection and Maintenance Log Form.


Checklist for Stormwater Report

Checklist (continued)

	Indard 8: Construction Period Pollution Prevention and Erosion and Sedimentation ntinued)	Control
	The project is highly complex and information is included in the Stormwater Report that e it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevent Erosion and Sedimentation Control has <i>not</i> been included in the Stormwater Report but submitted <i>before</i> land disturbance begins.	on and
	The project is <i>not</i> covered by a NPDES Construction General Permit.	
	The project is covered by a NPDES Construction General Permit and a copy of the SWP Stormwater Report.	PP is in the
	The project is covered by a NPDES Construction General Permit but no SWPPP been surface SWPPP will be submitted BEFORE land disturbance begins.	bmitted.
Sta	ndard 9: Operation and Maintenance Plan	
	The Post Construction Operation and Maintenance Plan is included in the Stormwater Reincludes the following information:	port and
	☐ Name of the stormwater management system owners;	
	☐ Party responsible for operation and maintenance;	
	☐ Schedule for implementation of routine and non-routine maintenance tasks;	
	☐ Plan showing the location of all stormwater BMPs maintenance access areas;	
	☐ Description and delineation of public safety features;	
	☐ Estimated operation and maintenance budget; and	
	Operation and Maintenance Log Form.	
	The responsible party is not the owner of the parcel where the BMP is located and the Steport includes the following submissions:	ormwater
	A copy of the legal instrument (deed, homeowner's association, utility trust or other legal that establishes the terms of and legal responsibility for the operation and maintenan project site stormwater BMPs;	
	A plan and easement deed that allows site access for the legal entity to operate and BMP functions.	maintain
Sta	ndard 10: Prohibition of Illicit Discharges	
	The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;	
	An Illicit Discharge Compliance Statement is attached;	
	NO Illicit Discharge Compliance Statement is attached but will be submitted <i>prior to</i> the any stormwater to post-construction BMPs.	discharge of

APPENDIX C

NRCS Soils Data

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:20.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: Worcester County, Massachusetts, Northeastern Part Survey Area Data: Version 14, Sep 13, 2019 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Sep 12. 2014—Sep **Soil Rating Points** 29, 2019 The orthophoto or other base map on which the soil lines were A/D compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Water		0.8	2.1%
52A	Freetown muck, 0 to 1 percent slopes	B/D	4.2	10.7%
102C	Chatfield-Hollis-Rock outcrop complex, 0 to 15 percent slopes	В	0.2	0.4%
102D	Chatfield-Hollis-Rock outcrop complex, 15 to 35 percent slopes	D	8.1	20.7%
245E	Hinckley loamy sand, 25 to 35 percent slopes	А	4.7	12.1%
305B	Paxton fine sandy loam, 3 to 8 percent slopes	С	2.8	7.3%
310B	Woodbridge fine sandy loam, 3 to 8 percent slopes	C/D	2.6	6.7%
421B	Canton fine sandy loam, 0 to 8 percent slopes, very stony	В	7.7	19.6%
600	Pits, gravel		8.0	20.4%
Totals for Area of Interest			39.0	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

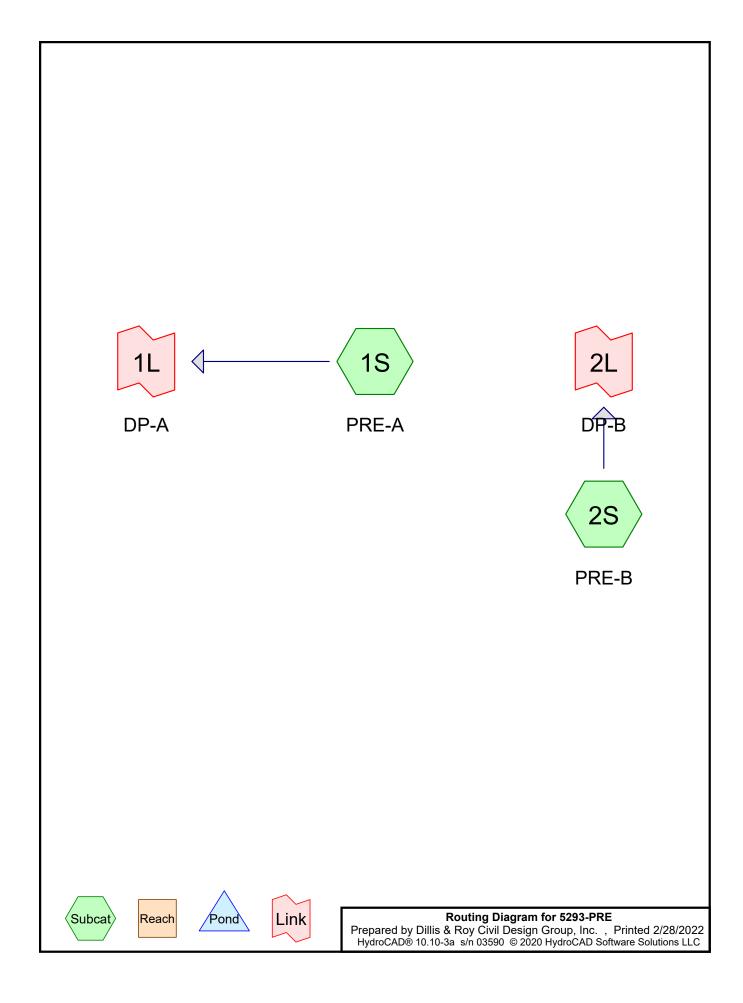
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options


Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

APPENDIX D

Existing Conditions – Hydrologic Calculations

Printed 2/28/2022 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.344	39	>75% Grass cover, Good, HSG A (1S)
0.529	96	Gravel surface, HSG A (1S, 2S)
2.854	30	Woods, Good, HSG A (1S, 2S)
0.048	55	Woods, Good, HSG B (2S)
0.549	77	Woods, Good, HSG D (1S, 2S)
4.324	45	TOTAL AREA

Printed 2/28/2022 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
3.727	HSG A	1S, 2S
0.048	HSG B	2S
0.000	HSG C	
0.549	HSG D	1S, 2S
0.000	Other	
4.324		TOTAL AREA

5293-PRE

Prepared by Dillis & Roy Civil Design Group, Inc.

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Printed 2/28/2022 Page 4

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.344	0.000	0.000	0.000	0.000	0.344	>75% Grass cover, Good	1S
0.529	0.000	0.000	0.000	0.000	0.529	Gravel surface	1S, 2S
2.854	0.048	0.000	0.549	0.000	3.452	Woods, Good	1S, 2S
3.727	0.048	0.000	0.549	0.000	4.324	TOTAL AREA	

Prepared by Dillis & Roy Civil Design Group, Inc. HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Printed 2/28/2022

Page 5

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: PRE-A Runoff Area=52,347 sf 0.00% Impervious Runoff Depth=0.03"

Flow Length=483' Tc=11.8 min CN=43 Runoff=0.00 cfs 0.003 af

Subcatchment2S: PRE-B Runoff Area=136,017 sf 0.00% Impervious Runoff Depth=0.06"

Flow Length=212' Tc=7.1 min CN=46 Runoff=0.03 cfs 0.017 af

Link 1L: DP-A Inflow=0.00 cfs 0.003 af

Primary=0.00 cfs 0.003 af

Link 2L: DP-B Inflow=0.03 cfs 0.017 af

Primary=0.03 cfs 0.017 af

Total Runoff Area = 4.324 ac Runoff Volume = 0.019 af Average Runoff Depth = 0.05" 100.00% Pervious = 4.324 ac 0.00% Impervious = 0.000 ac

Page 6

Summary for Subcatchment 1S: PRE-A

Runoff = 0.00 cfs @ 17.05 hrs, Volume= 0.003 af, Depth= 0.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

	А	rea (sf)	CN I	Description							
		1,981	96 (Gravel surface, HSG A							
		14,974	39 :	>75% Gras	s cover, Go	ood, HSG A					
		26,864	30 \	Noods, Go	od, HSG A						
_		8,528	77 \	Noods, Go	od, HSG D						
		52,347	43 \	Neighted A	verage						
		52,347	•	100.00% Pe	ervious Are	ea					
	_										
	Тс	Length	Slope		Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	5.9	50	0.1300	0.14		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 3.10"					
	5.9	433	0.0600	1.22		Shallow Concentrated Flow,					
_						Woodland Kv= 5.0 fps					
	11.8	483	Total								

Page 7

Summary for Subcatchment 2S: PRE-B

Runoff = 0.03 cfs @ 14.97 hrs, Volume= 0.017 af, Depth= 0.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

_	Α	rea (sf)	CN I	Description		
		21,041	96 (Gravel surfa	ace, HSG A	1
		97,477	30 \	Noods, Go	od, HSG A	
		2,108	55 \	Noods, Go	od, HSG B	
_		15,391	77 \	Woods, Go	od, HSG D	
136,017 46 Weighted Average					verage	
	136,017 100.00% Pervious Area					a
	Tc	Length	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.6	50	0.1500	0.15		Sheet Flow,
				Woods: Light underbrush n= 0.400 P2= 3.10"		
	1.5	162	0.1300	1.80		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	7 1	212	Total			

Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 8

Summary for Link 1L: DP-A

Inflow Area = 1.202 ac, 0.00% Impervious, Inflow Depth = 0.03" for 2-year event

Inflow = 0.00 cfs @ 17.05 hrs, Volume= 0.003 af

Primary = 0.00 cfs @ 17.05 hrs, Volume= 0.003 af, Atten= 0%, Lag= 0.0 min

5293-PRE

Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 9

Summary for Link 2L: DP-B

Inflow Area = 3.123 ac, 0.00% Impervious, Inflow Depth = 0.06" for 2-year event

Inflow = 0.03 cfs @ 14.97 hrs, Volume= 0.017 af

Primary = 0.03 cfs @ 14.97 hrs, Volume= 0.017 af, Atten= 0%, Lag= 0.0 min

Prepared by Dillis & Roy Civil Design Group, Inc. HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Printed 2/28/2022

Page 10

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: PRE-A Runoff Area=52,347 sf 0.00% Impervious Runoff Depth=0.35"

Flow Length=483' Tc=11.8 min CN=43 Runoff=0.15 cfs 0.035 af

Subcatchment2S: PRE-B Runoff Area=136,017 sf 0.00% Impervious Runoff Depth=0.48"

Flow Length=212' Tc=7.1 min CN=46 Runoff=0.71 cfs 0.125 af

Link 1L: DP-A Inflow=0.15 cfs 0.035 af

Primary=0.15 cfs 0.035 af

Link 2L: DP-B Inflow=0.71 cfs 0.125 af

Primary=0.71 cfs 0.125 af

Total Runoff Area = 4.324 ac Runoff Volume = 0.160 af Average Runoff Depth = 0.44" 100.00% Pervious = 4.324 ac 0.00% Impervious = 0.000 ac

Page 11

Summary for Subcatchment 1S: PRE-A

Runoff = 0.15 cfs @ 12.45 hrs, Volume= 0.035 af, Depth= 0.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

	Α	rea (sf)	CN [CN Description							
_		1,981	96 (6 Gravel surface, HSG A							
		14,974	39 >	75% Gras	s cover, Go	ood, HSG A					
		26,864	30 \	Voods, Go	od, HSG A						
		8,528	77 \	Voods, Go	od, HSG D						
52,347 43 Weighted Average											
		52,347	1	100.00% Pe	ervious Are	ea					
	Тс	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	5.9	50	0.1300	0.14		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 3.10"					
	5.9	433	0.0600	1.22		Shallow Concentrated Flow,					
_						Woodland Kv= 5.0 fps					
	11.8	483	Total								

Page 12

Summary for Subcatchment 2S: PRE-B

Runoff = 0.71 cfs @ 12.29 hrs, Volume= 0.125 af, Depth= 0.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

_	Α	rea (sf)	CN I	CN Description						
		21,041	96 (Gravel surfa	ace, HSG A	1				
		97,477	30 \	Noods, Go	od, HSG A					
		2,108	55 \	Noods, Go	od, HSG B					
		15,391	77 \	Noods, Go	od, HSG D					
	1	36,017	46 \	Neighted A	verage					
	1	36,017		100.00% P	ervious Are	a				
	Тс	Length	Slope	•	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.6	50	0.1500	0.15		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.10"				
	1.5	162	0.1300	1.80		Shallow Concentrated Flow,				
_						Woodland Kv= 5.0 fps				
	7 1	212	Total							

Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 13

Summary for Link 1L: DP-A

Inflow Area = 1.202 ac, 0.00% Impervious, Inflow Depth = 0.35" for 10-year event

Inflow = 0.15 cfs @ 12.45 hrs, Volume= 0.035 af

Primary = 0.15 cfs @ 12.45 hrs, Volume= 0.035 af, Atten= 0%, Lag= 0.0 min

Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 14

Summary for Link 2L: DP-B

Inflow Area = 3.123 ac, 0.00% Impervious, Inflow Depth = 0.48" for 10-year event

Inflow = 0.71 cfs @ 12.29 hrs, Volume= 0.125 af

Primary = 0.71 cfs @ 12.29 hrs, Volume= 0.125 af, Atten= 0%, Lag= 0.0 min

Type III 24-hr 25-year Rainfall=6.05"

5293-PRE

Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Page 15

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: PRE-A Runoff Area=52,347 sf 0.00% Impervious Runoff Depth=0.69"

Flow Length=483' Tc=11.8 min CN=43 Runoff=0.42 cfs 0.069 af

Subcatchment2S: PRE-B Runoff Area=136,017 sf 0.00% Impervious Runoff Depth=0.89"

Flow Length=212' Tc=7.1 min CN=46 Runoff=2.00 cfs 0.231 af

Link 1L: DP-A Inflow=0.42 cfs 0.069 af

Primary=0.42 cfs 0.069 af

Link 2L: DP-B Inflow=2.00 cfs 0.231 af

Primary=2.00 cfs 0.231 af

Total Runoff Area = 4.324 ac Runoff Volume = 0.300 af Average Runoff Depth = 0.83" 100.00% Pervious = 4.324 ac 0.00% Impervious = 0.000 ac

Page 16

Summary for Subcatchment 1S: PRE-A

Runoff = 0.42 cfs @ 12.30 hrs, Volume= 0.069 af, Depth= 0.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

	Α	rea (sf)	CN I	Description						
-		1,981	96 (Gravel surface, HSG A						
		14,974	39 :	>75% Gras	s cover, Go	ood, HSG A				
		26,864	30 \	Noods, Go	od, HSG A					
_		8,528	77 \	Noods, Go	od, HSG D					
		52,347	43 \	Neighted A	verage					
		52,347	•	100.00% P	ervious Are	ea				
	Tc	Length	Slope	,	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.9	50	0.1300	0.14		Sheet Flow,				
	1					Woods: Light underbrush n= 0.400 P2= 3.10"				
	5.9	433	0.0600	1.22		Shallow Concentrated Flow,				
_						Woodland Kv= 5.0 fps				
	11.8	483	Total							

Page 17

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Runoff = 2.00 cfs @ 12.15 hrs, Volume= 0.231 af, Depth= 0.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

Summary for Subcatchment 2S: PRE-B

_	Α	rea (sf)	CN I	CN Description						
		21,041	96 (Gravel surfa	ace, HSG A	1				
		97,477	30 \	Noods, Go	od, HSG A					
		2,108	55 \	Noods, Go	od, HSG B					
		15,391	77 \	Noods, Go	od, HSG D					
	1	36,017	46 \	Neighted A	verage					
	1	36,017		100.00% P	ervious Are	a				
	Тс	Length	Slope	•	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.6	50	0.1500	0.15		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.10"				
	1.5	162	0.1300	1.80		Shallow Concentrated Flow,				
_						Woodland Kv= 5.0 fps				
	7 1	212	Total							

Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 18

Summary for Link 1L: DP-A

Inflow Area = 1.202 ac, 0.00% Impervious, Inflow Depth = 0.69" for 25-year event

Inflow = 0.42 cfs @ 12.30 hrs, Volume= 0.069 af

Primary = 0.42 cfs @ 12.30 hrs, Volume= 0.069 af, Atten= 0%, Lag= 0.0 min

Type III 24-hr 25-year Rainfall=6.05"

5293-PRE

Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 19

Summary for Link 2L: DP-B

Inflow Area = 3.123 ac, 0.00% Impervious, Inflow Depth = 0.89" for 25-year event

Inflow = 2.00 cfs @ 12.15 hrs, Volume= 0.231 af

Primary = 2.00 cfs @ 12.15 hrs, Volume= 0.231 af, Atten= 0%, Lag= 0.0 min

Type III 24-hr 100-year Rainfall=7.71"

5293-PRE

Prepared by Dillis & Roy Civil Design Group, Inc. HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Printed 2/28/2022

Page 20

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: PRE-A Runoff Area=52,347 sf 0.00% Impervious Runoff Depth=1.40"

Flow Length=483' Tc=11.8 min CN=43 Runoff=1.22 cfs 0.140 af

Subcatchment2S: PRE-B Runoff Area=136,017 sf 0.00% Impervious Runoff Depth=1.68"

Flow Length=212' Tc=7.1 min CN=46 Runoff=4.90 cfs 0.437 af

Link 1L: DP-A Inflow=1.22 cfs 0.140 af

Primary=1.22 cfs 0.140 af

Link 2L: DP-B Inflow=4.90 cfs 0.437 af

Primary=4.90 cfs 0.437 af

Total Runoff Area = 4.324 ac Runoff Volume = 0.577 af Average Runoff Depth = 1.60" 100.00% Pervious = 4.324 ac 0.00% Impervious = 0.000 ac

Prepared by Dillis & Roy Civil Design Group, Inc. HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Printed 2/28/2022

Page 21

Summary for Subcatchment 1S: PRE-A

Runoff = 1.22 cfs @ 12.21 hrs, Volume= 0.140 af, Depth= 1.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

	А	rea (sf)	CN I	Description							
		1,981	96 (Gravel surface, HSG A							
		14,974	39 :	>75% Gras	s cover, Go	ood, HSG A					
		26,864	30 \	Noods, Go	od, HSG A						
_		8,528	77 \	Noods, Go	od, HSG D						
		52,347	43 \	Neighted A	verage						
		52,347	•	100.00% Pe	ervious Are	ea					
	_										
	Тс	Length	Slope		Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	5.9	50	0.1300	0.14		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 3.10"					
	5.9	433	0.0600	1.22		Shallow Concentrated Flow,					
_						Woodland Kv= 5.0 fps					
	11.8	483	Total								

Page 22

Summary for Subcatchment 2S: PRE-B

Runoff = 4.90 cfs @ 12.12 hrs, Volume= 0.437 af, Depth= 1.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

_	Α	rea (sf)	CN I	CN Description						
		21,041	96 (Gravel surfa	ace, HSG A	1				
		97,477	30 \	Noods, Go	od, HSG A					
		2,108	55 \	Noods, Go	od, HSG B					
		15,391	77 \	Noods, Go	od, HSG D					
	1	36,017	46 \	Neighted A	verage					
	1	36,017		100.00% P	ervious Are	a				
	Тс	Length	Slope	•	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.6	50	0.1500	0.15		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.10"				
	1.5	162	0.1300	1.80		Shallow Concentrated Flow,				
_						Woodland Kv= 5.0 fps				
	7 1	212	Total							

Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 23

Summary for Link 1L: DP-A

Inflow Area = 1.202 ac, 0.00% Impervious, Inflow Depth = 1.40" for 100-year event

Inflow = 1.22 cfs @ 12.21 hrs, Volume= 0.140 af

Primary = 1.22 cfs @ 12.21 hrs, Volume= 0.140 af, Atten= 0%, Lag= 0.0 min

Type III 24-hr 100-year Rainfall=7.71"

5293-PRE

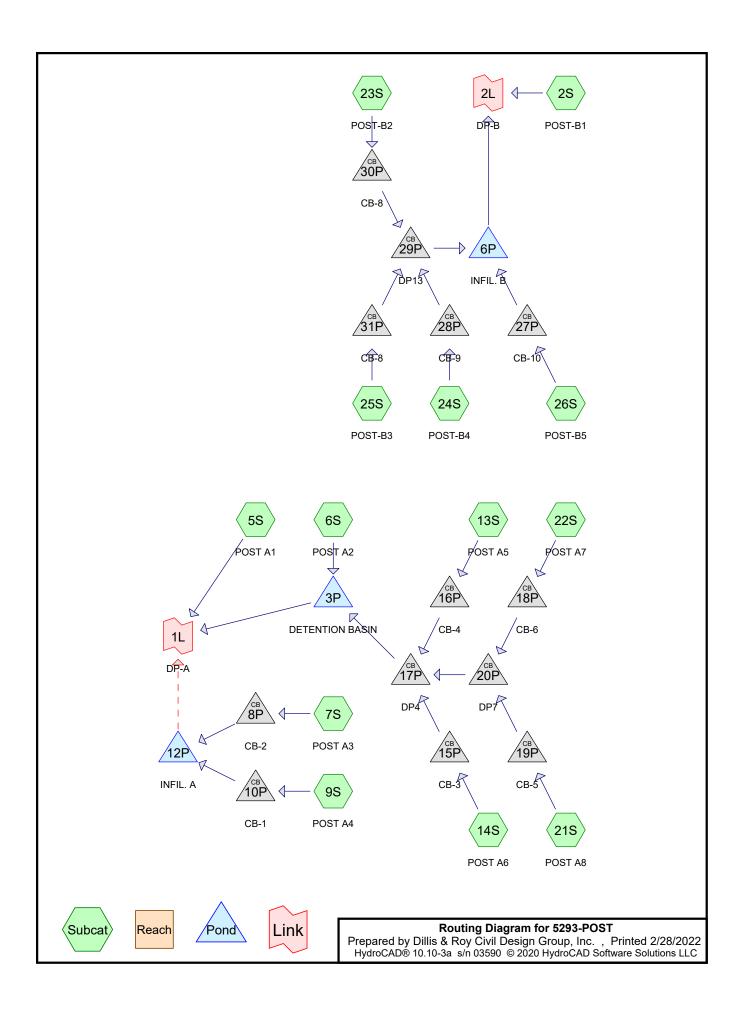
Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 24

Summary for Link 2L: DP-B


Inflow Area = 3.123 ac, 0.00% Impervious, Inflow Depth = 1.68" for 100-year event

Inflow = 4.90 cfs @ 12.12 hrs, Volume= 0.437 af

Primary = 4.90 cfs @ 12.12 hrs, Volume= 0.437 af, Atten= 0%, Lag= 0.0 min

APPENDIX E

Proposed Conditions – Hydrologic Calculations

Area Listing (all nodes)

A	Area	CN	Description
(ac	res)		(subcatchment-numbers)
2.	.136	39	>75% Grass cover, Good, HSG A (2S, 5S, 6S, 7S, 9S, 13S, 14S, 21S, 22S, 23S,
			24S, 25S, 26S)
0.	.325	80	>75% Grass cover, Good, HSG D (14S, 21S, 24S, 25S, 26S)
0.	.659	98	Paved parking, HSG A (5S, 7S, 9S, 13S, 14S, 21S, 22S, 23S, 25S, 26S)
0.	.415	98	Roofs, HSG A (2S, 23S, 24S, 25S, 26S)
0.	.075	98	Unconnected roofs, HSG A (6S, 13S, 21S)
0.	.030	98	Unconnected roofs, HSG D (21S)
0.	.456	30	Woods, Good, HSG A (2S, 5S, 6S, 14S, 23S, 24S, 25S, 26S)
0.	.226	77	Woods, Good, HSG D (14S, 24S, 25S, 26S)
4	.323	59	TOTAL AREA

Soil Listing (all nodes)

	Area	Soil	Subcatchment
((acres)	Group	Numbers
	3.742	HSG A	2S, 5S, 6S, 7S, 9S, 13S, 14S, 21S, 22S, 23S, 24S, 25S, 26S
	0.000	HSG B	
	0.000	HSG C	
	0.582	HSG D	14S, 21S, 24S, 25S, 26S
	0.000	Other	
	4.323		TOTAL AREA

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
2.136	0.000	0.000	0.325	0.000	2.462	>75% Grass cover, Good	2S, 5S,
							6S, 7S,
							9S,
							13S,
							14S,
							21S,
							22S,
							23S,
							24S,
							25S,
							26S
0.659	0.000	0.000	0.000	0.000	0.659	Paved parking	5S, 7S,
							9S,
							13S,
							14S,
							21S,
							22S,
							23S,
							25S,
							26S
0.415	0.000	0.000	0.000	0.000	0.415	Roofs	2S,
							23S,
							24S,
							25S,
							26S
0.075	0.000	0.000	0.030	0.000	0.104	Unconnected roofs	6S,
							13S,
0.450	0.000	0.000	0.000	0.000	0.000	W 1 0 1	218
0.456	0.000	0.000	0.226	0.000	0.682	Woods, Good	2S, 5S,
							6S,
							14S,
							23S,
							24S,
							25S,
2 742	0.000	0.000	0.500	0.000	4 202	TOTAL AREA	26S
3.742	0.000	0.000	0.582	0.000	4.323	IUIAL AKEA	

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	6P	356.00	355.00	139.0	0.0072	0.013	12.0	0.0	0.0
2	8P	344.04	343.77	27.0	0.0100	0.012	12.0	0.0	0.0
3	10P	344.04	343.77	8.0	0.0338	0.012	12.0	0.0	0.0
4	12P	346.00	345.00	20.0	0.0500	0.130	12.0	0.0	0.0
5	15P	348.09	347.79	15.0	0.0200	0.012	12.0	0.0	0.0
6	16P	348.09	347.79	15.0	0.0200	0.012	12.0	0.0	0.0
7	17P	347.69	347.26	43.0	0.0100	0.012	15.0	0.0	0.0
8	18P	356.89	356.59	15.0	0.0200	0.012	12.0	0.0	0.0
9	19P	356.89	356.59	15.0	0.0200	0.012	12.0	0.0	0.0
10	20P	356.49	347.79	159.0	0.0547	0.012	12.0	0.0	0.0
11	27P	361.96	359.29	89.0	0.0300	0.012	12.0	0.0	0.0
12	28P	360.34	360.03	31.0	0.0100	0.012	12.0	0.0	0.0
13	29P	359.93	359.29	64.0	0.0100	0.012	18.0	0.0	0.0
14	30P	360.33	360.03	30.0	0.0100	0.012	12.0	0.0	0.0
15	31P	360.33	360.03	30.0	0.0100	0.012	12.0	0.0	0.0

Subcatchment26S: POST-B5

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 6

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment2S: POST-B1	Runoff Area=35,830 sf 9.91% Impervious Runoff Depth=0.02" Tc=6.0 min CN=42 Runoff=0.00 cfs 0.001 af
Subcatchment5S: POST A1	Runoff Area=6,376 sf 6.09% Impervious Runoff Depth=0.02" Tc=6.0 min CN=42 Runoff=0.00 cfs 0.000 af
Subcatchment6S: POST A2	Runoff Area=14,477 sf 13.39% Impervious Runoff Depth=0.02" Tc=6.0 min UI Adjusted CN=42 Runoff=0.00 cfs 0.000 af
Subcatchment7S: POST A3	Runoff Area=1,656 sf 64.49% Impervious Runoff Depth=1.25" Tc=6.0 min CN=77 Runoff=0.05 cfs 0.004 af
Subcatchment9S: POST A4	Runoff Area=7,665 sf 21.20% Impervious Runoff Depth=0.19" Tc=6.0 min CN=52 Runoff=0.01 cfs 0.003 af
Subcatchment13S: POST A5	Runoff Area=5,473 sf 51.69% Impervious Runoff Depth=0.81" Tc=6.0 min CN=69 Runoff=0.10 cfs 0.008 af
Subcatchment14S: POST A6	Runoff Area=23,604 sf 10.20% Impervious Runoff Depth=0.27" Tc=6.0 min CN=55 Runoff=0.06 cfs 0.012 af
Subcatchment21S: POST A8	Runoff Area=11,091 sf 51.42% Impervious Runoff Depth=1.72" Tc=6.0 min CN=84 Runoff=0.50 cfs 0.037 af
Subcatchment22S: POST A7	Runoff Area=3,287 sf 69.15% Impervious Runoff Depth=1.44" Tc=6.0 min CN=80 Runoff=0.12 cfs 0.009 af
Subcatchment23S: POST-B2	Runoff Area=23,538 sf 56.59% Impervious Runoff Depth=0.96" Tc=6.0 min CN=72 Runoff=0.56 cfs 0.043 af
Subcatchment24S: POST-B4	Runoff Area=8,332 sf 7.80% Impervious Runoff Depth=0.91" Tc=6.0 min CN=71 Runoff=0.18 cfs 0.014 af
Subcatchment25S: POST-B3	Runoff Area=17,344 sf 47.42% Impervious Runoff Depth=1.19" Tc=6.0 min CN=76 Runoff=0.53 cfs 0.039 af
Out 4 - h 4000 - DOOT DE	D # A

Pond 3P: DETENTION BASIN

Peak Elev=346.10' Storage=223 cf Inflow=0.75 cfs 0.067 af

Discarded=0.44 cfs 0.067 af Primary=0.00 cfs 0.000 af Outflow=0.44 cfs 0.067 af

Runoff Area=29,650 sf 24.93% Impervious Runoff Depth=0.33"

Tc=6.0 min CN=57 Runoff=0.11 cfs 0.019 af

Pond 6P: INFIL. B Peak Elev=356.37' Storage=0.022 af Inflow=1.35 cfs 0.116 af Discarded=0.42 cfs 0.116 af Primary=0.00 cfs 0.000 af Outflow=0.42 cfs 0.116 af

Pond 8P: CB-2 Peak Elev=344.16' Inflow=0.05 cfs 0.004 af 12.0" Round Culvert n=0.012 L=27.0' S=0.0100 '/' Outflow=0.05 cfs 0.004 af

Peak Elev=344.09' Inflow=0.01 cfs 0.003 af

12.0" Round Culvert n=0.012 L=8.0' S=0.0338 '/' Outflow=0.01 cfs 0.003 af

Pond 10P: CB-1

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 7

Pond 12P: INFIL. A

Peak Elev=343.29' Storage=0.000 af Inflow=0.05 cfs 0.007 af Discarded=0.05 cfs 0.007 af Secondary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.007 af

Pond 15P: CB-3

Peak Elev=348.22' Inflow=0.06 cfs 0.012 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.06 cfs 0.012 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.000 Culvert n=0.000 Culvert n=0.000 Culv

Pond 17P: DP4 Peak Elev=348.15' Inflow=0.75 cfs 0.066 af 15.0" Round Culvert n=0.012 L=43.0' S=0.0100 '/' Outflow=0.75 cfs 0.066 af

Pond 18P: CB-6 Peak Elev=357.08' Inflow=0.12 cfs 0.009 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.12 cfs 0.009 af

Pond 19P: CB-5

Peak Elev=357.29' Inflow=0.50 cfs 0.037 af
12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.50 cfs 0.037 af

Pond 20P: DP7 Peak Elev=356.94' Inflow=0.63 cfs 0.046 af 12.0" Round Culvert n=0.012 L=159.0' S=0.0547 '/' Outflow=0.63 cfs 0.046 af

Pond 27P: CB-10 Peak Elev=362.14' Inflow=0.11 cfs 0.019 af 12.0" Round Culvert n=0.012 L=89.0' S=0.0300 '/' Outflow=0.11 cfs 0.019 af

Pond 28P: CB-9 Peak Elev=360.58' Inflow=0.18 cfs 0.014 af 12.0" Round Culvert n=0.012 L=31.0' S=0.0100 '/' Outflow=0.18 cfs 0.014 af

Pond 29P: DP13 Peak Elev=360.50' Inflow=1.27 cfs 0.097 af 18.0" Round Culvert n=0.012 L=64.0' S=0.0100 '/' Outflow=1.27 cfs 0.097 af

Pond 30P: CB-8 Peak Elev=360.75' Inflow=0.56 cfs 0.043 af 12.0" Round Culvert n=0.012 L=30.0' S=0.0100 '/' Outflow=0.56 cfs 0.043 af

Pond 31P: CB-8 Peak Elev=360.74' Inflow=0.53 cfs 0.039 af 12.0" Round Culvert n=0.012 L=30.0' S=0.0100 '/' Outflow=0.53 cfs 0.039 af

Link 1L: DP-A Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Link 2L: DP-BInflow=0.00 cfs 0.001 af
Primary=0.00 cfs 0.001 af

Total Runoff Area = 4.323 ac Runoff Volume = 0.190 af Average Runoff Depth = 0.53" 72.72% Pervious = 3.144 ac 27.28% Impervious = 1.179 ac Prepared by Dillis & Roy Civil Design Group, Inc. HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Printed 2/28/2022

Page 8

Summary for Subcatchment 2S: POST-B1

Runoff = 0.00 cfs @ 21.14 hrs, Volume= 0.001 af, Depth= 0.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

	A	rea (sf)	CN	Description						
		3,550	98	Roofs, HSC	λ					
		22,530	39	>75% Gras	s cover, Go	ood, HSG A				
_		9,750	30	Woods, Go	od, HSG A					
		35,830	42	Weighted Average						
		32,280		90.09% Pervious Area						
		3,550		9.91% Impervious Area						
	_				_					
	Tc	Length	Slope	,	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Direct Entry				

6.0 **Direct Entry**,

Prepared by Dillis & Roy Civil Design Group, Inc. HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Printed 2/28/2022

Page 9

Summary for Subcatchment 5S: POST A1

Runoff = 0.00 cfs @ 21.14 hrs, Volume= 0.000 af, Depth= 0.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

	Ar	rea (sf)	CN	Description						
		5,531	39	>75% Gras	s cover, Go	ood, HSG A				
		457	30	Woods, Go	od, HSG A					
		388	98	Paved park	ing, HSG A	L				
		6,376	42	Weighted Average						
		5,988		93.91% Pe	rvious Area					
		388		6.09% Impervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
(m	nin)	(feet)	(ft/ft	(ft/sec) (cfs)						
	6.0			Direct Entry						

5.0 Direct Entry

Prepared by Dillis & Roy Civil Design Group, Inc. HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Printed 2/28/2022

Page 10

Summary for Subcatchment 6S: POST A2

Runoff = 0.00 cfs @ 21.14 hrs, Volume= 0.000 af, Depth= 0.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

_	Aı	rea (sf)	CN	Adj	Description						
-		11,475	39		>75% Gra	ass cov	ver, Good, HSG A				
		1,064	30		Woods, G	Good, F	HSG A				
		1,938	98		Unconnec	cted ro	ofs, HSG A				
-		14,477	46	42	Weighted Average, UI Adjusted						
		12,539			86.61% P	erviou	is Area				
		1,938			13.39% Ir	npervi	ous Area				
		1,938			100.00% Unconnected						
	Тс	Length	Slope	e Velo	ocity Cap	acity	Description				
_	(min)	(feet)	(ft/ft)) (ft/:	sec)	ec) (cfs)					
	6.0		Direct Entry								

6.0 Direct Entry,

Prepared by Dillis & Roy Civil Design Group, Inc. HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Printed 2/28/2022

Page 11

Summary for Subcatchment 7S: POST A3

Runoff = 0.05 cfs @ 12.10 hrs, Volume= 0.004 af, Depth= 1.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

Α	rea (sf)	CN	Description						
	588	39	>75% Gras	s cover, Go	ood, HSG A				
	1,068	98	Paved park	ing, HSG A	\				
	1,656	77	Weighted Average						
	588		35.51% Pervious Area						
	1,068		64.49% Impervious Area						
_									
Tc	Length	Slope	,	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Diverse Frage				

6.0

Direct Entry,

Prepared by Dillis & Roy Civil Design Group, Inc. HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Printed 2/28/2022

Page 12

Summary for Subcatchment 9S: POST A4

Runoff = 0.01 cfs @ 12.40 hrs, Volume= 0.003 af, Depth= 0.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

Aı	rea (sf)	CN	Description					
	6,040	39	>75% Gras	s cover, Go	lood, HSG A			
	1,625	98	Paved park	ing, HSG A	Α			
	7,665	52	Weighted Average					
	6,040		78.80% Pervious Area					
	1,625		21.20% Imp	pervious Ar	rea			
т.	141.	01	V . I	0	Description			
Tc	Length	Slope	,	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry,			

Prepared by Dillis & Roy Civil Design Group, Inc. HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Printed 2/28/2022

Page 13

Summary for Subcatchment 13S: POST A5

Runoff = 0.10 cfs @ 12.11 hrs, Volume= 0.008 af, Depth= 0.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

A	rea (sf)	CN	Description						
	2,644	39	>75% Grass	s cover, Go	ood, HSG A				
	2,168	98	Paved parki	ng, HSG A	1				
	661	98	Unconnecte	d roofs, HS	SG A				
	5,473	69	Weighted Average						
	2,644		48.31% Pervious Area						
	2,829		51.69% Impervious Area						
	661		23.37% Unconnected						
Tc	Length	Slope	e Velocity	Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
6.0					Direct Entry				

6.0 Direct Entry,

Prepared by Dillis & Roy Civil Design Group, Inc. HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC Printed 2/28/2022

Page 14

Summary for Subcatchment 14S: POST A6

Runoff 0.06 cfs @ 12.32 hrs, Volume= 0.012 af, Depth= 0.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

	Area (sf)	CN	Description					
	2,408	98	Paved parking, HSG A					
	9,904	39	>75% Grass cover, Good, HSG A					
	920	80	>75% Grass cover, Good, HSG D					
	4,110	30	Woods, Good, HSG A					
	6,262	77	Woods, Good, HSG D					
	23,604	55	Weighted Average					
	21,196		89.80% Pervious Area					
	2,408 10.20% Impervious Area							
Tc	Length	Slop	pe Velocity Capacity Description					
(min)	(feet)	(ft/f	ft) (ft/sec) (cfs)					
6.0			Direct Entry					

Direct Entry,

Printed 2/28/2022

Page 15

Summary for Subcatchment 21S: POST A8

Runoff = 0.50 cfs @ 12.09 hrs, Volume= 0.037 af, Depth= 1.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

	Area (sf)	CN	N Description						
	1,428	39	>75% Grass	cover, Go	ood, HSG A				
	3,960	80	>75% Grass	cover, Go	ood, HSG D				
	3,753	98	Paved parkii	ng, HSG A	1				
	656	98	Unconnecte	d roofs, HS	SG A				
	1,294	98	Unconnecte	Unconnected roofs, HSG D					
	11,091	84	84 Weighted Average						
	5,388		48.58% Pervious Area						
	5,703	5 51.42% Impervious Area							
	1,950	34.19% Unconnected							
	Tc Length		•	Capacity	Description				
(1	min) (feet)) (ft/	ft) (ft/sec)	(cfs)					
	6.0				Direct Entry				

6.0

Direct Entry,

Printed 2/28/2022

Page 16

Summary for Subcatchment 22S: POST A7

Runoff = 0.12 cfs @ 12.10 hrs, Volume= 0.009 af, Depth= 1.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

_	Α	rea (sf)	CN	Description				
-		1,014	39	>75% Grass cover, Good, HSG A				
		2,273	98	Paved parking, HSG A				
		3,287	80	Weighted Average				
		1,014		30.85% Pervious Area				
		2,273		69.15% Impervious Area				
	_							
	Tc	Length	Slope	,	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	6.0					Diverse Frage		

6.0

Direct Entry,

Printed 2/28/2022

Page 17

Summary for Subcatchment 23S: POST-B2

Runoff = 0.56 cfs @ 12.10 hrs, Volume= 0.043 af, Depth= 0.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

		011						
A	rea (sf)	CN	Description					
	9,971	39	>75% Gras	s cover, Go	Good, HSG A			
	247	30	Woods, Go	od, HSG A	A			
	6,536	98	Paved park	ing, HSG A	A			
	6,784	98	Roofs, HSG A					
	23,538	72	2 Weighted Average					
	10,218		43.41% Per	rvious Area	a			
13,320 56.59% Impervious Area								
Тс	Length	Slop	e Velocity	Capacity	/ Description			
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)				
6.0					Direct Entry			

Printed 2/28/2022

Page 18

Summary for Subcatchment 24S: POST-B4

Runoff = 0.18 cfs @ 12.10 hrs, Volume= 0.014 af, Depth= 0.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

Aı	rea (sf)	CN	Description			
•	1,793	39	>75% Grass	cover, Go	Good, HSG A	
	4,921	80	>75% Grass	cover, Go	lood, HSG D	
	138	30	Woods, Goo	d, HSG A	4	
	830	77	Woods, Goo	d, HSG D		
	650	98	Roofs, HSG	Α		
	8,332	71	Weighted Av	/erage		
	7,682		92.20% Per	vious Area	a	
	650		7.80% Impe	rvious Area	ea	
_						
Tc	Length	Slop	•	Capacity	Description	
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)		
6.0					Direct Entry,	

Printed 2/28/2022

Page 19

Summary for Subcatchment 25S: POST-B3

Runoff = 0.53 cfs @ 12.10 hrs, Volume= 0.039 af, Depth= 1.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

Area (sf)	CN	CN Description				
5,059	39	>75% Grass cover, Good, HSG A				
3,462	80	>75% Grass cover, Good, HSG D				
177	30	Woods, Good, HSG A				
422	77	Woods, Good, HSG D				
6,064	98	Paved parking, HSG A				
2,160	98	Roofs, HSG A				
17,344	76	Weighted Average				
9,120		52.58% Pervious Area				
8,224	8,224 47.42% Impervious Area					
Tc Length						
(min) (feet) (ft/	ft) (ft/sec) (cfs)				
6.0		Direct Entry				

Printed 2/28/2022

Page 20

Summary for Subcatchment 26S: POST-B5

Runoff = 0.11 cfs @ 12.15 hrs, Volume= 0.019 af, Depth= 0.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.25"

Area (sf)	CN	Description
15,074	39	>75% Grass cover, Good, HSG A
915	80	>75% Grass cover, Good, HSG D
3,920	30	Woods, Good, HSG A
2,348	77	Woods, Good, HSG D
2,439	98	Paved parking, HSG A
4,954	98	Roofs, HSG A
29,650	57	Weighted Average
22,257		75.07% Pervious Area
7,393		24.93% Impervious Area
Tc Length		
(min) (feet)	(ft/	/ft) (ft/sec) (cfs)
6.0		Direct Entry,

Printed 2/28/2022

<u>Page 21</u>

Summary for Pond 3P: DETENTION BASIN

Inflow Area = 1.330 ac, 26.15% Impervious, Inflow Depth = 0.60" for 2-year event

Inflow = 0.75 cfs @ 12.10 hrs, Volume= 0.067 af

Outflow = 0.44 cfs @ 12.26 hrs, Volume= 0.067 af, Atten= 42%, Lag= 9.6 min

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 346.10' @ 12.26 hrs Surf.Area= 2,229 sf Storage= 223 cf

Plug-Flow detention time= 4.4 min calculated for 0.067 af (100% of inflow)

Center-of-Mass det. time= 4.4 min (866.0 - 861.7)

Volume	Invert	Avail.S	torage	Storage Description	on	
#1	346.00'	14,	542 cf	Custom Stage Da	ata (Irregular) Liste	ed below (Recalc)
Elevation	on Su	ırf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
346.0	00	2,163	220.0	0	0	2,163
347.0	00	2,853	239.0	2,500	2,500	2,894
348.0	00	3,600	258.0	3,219	5,719	3,685
349.0	00	4,404	277.0	3,995	9,715	4,537
350.0	00	5,264	296.0	4,828	14,542	5,450
Device	Routing	Inver	t Outle	et Devices		
#1	Discarded	346.00	8.27	0 in/hr Exfiltration	over Surface are	ea
			Cond	ductivity to Ground	water Elevation = 3	343.00'
#2	Primary	349.00	20.0	' long x 16.0' brea	adth Broad-Crest	ed Rectangular Weir
			Head	d (feet) 0.20 0.40	0.60 0.80 1.00 1	1.20 1.40 1.60
			Coef	f. (English) 2.68 2.	.70 2.70 2.64 2.6	63 2.64 2.64 2.63

Discarded OutFlow Max=0.44 cfs @ 12.26 hrs HW=346.10' (Free Discharge) 1=Exfiltration (Controls 0.44 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=346.00' (Free Discharge) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 22

Summary for Pond 6P: INFIL. B

Inflow Area = 1.810 ac, 37.52% Impervious, Inflow Depth = 0.77" for 2-year event
Inflow = 1.35 cfs @ 12.11 hrs, Volume= 0.116 af
Outflow = 0.42 cfs @ 12.51 hrs, Volume= 0.116 af, Atten= 69%, Lag= 24.5 min
Discarded = 0.42 cfs @ 12.51 hrs, Volume= 0.116 af
Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 356.37' @ 12.51 hrs Surf.Area= 0.039 ac Storage= 0.022 af Flood Elev= 364.70' Surf.Area= 0.039 ac Storage= 0.152 af

Plug-Flow detention time= 14.2 min calculated for 0.116 af (100% of inflow) Center-of-Mass det. time= 14.2 min (889.0 - 874.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	355.00'	0.069 af	39.50'W x 43.37'L x 6.50'H Field A
			0.256 af Overall - 0.082 af Embedded = 0.173 af x 40.0% Voids
#2A	356.50'	0.082 af	Cultec R-902HD x 55 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			55 Chambers in 5 Rows
			Cap Storage= +2.8 cf x 2 x 5 rows = 27.6 cf
		0.152 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	355.00'	8.270 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 350.00'
#2	Device 4	360.50'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Device 4	357.00'	5.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Primary	356.00'	12.0" Round Culvert
			L= 139.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 356.00' / 355.00' S= 0.0072 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf

Discarded OutFlow Max=0.42 cfs @ 12.51 hrs HW=356.37' (Free Discharge) 1=Exfiltration (Controls 0.42 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=355.00' (Free Discharge)

4=Culvert (Controls 0.00 cfs)

2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

<u>Page 23</u>

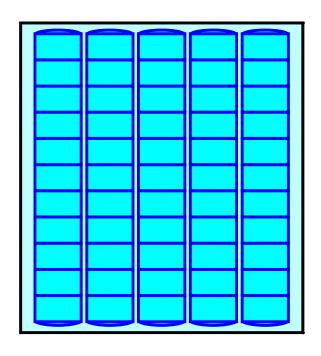
Pond 6P: INFIL. B - Chamber Wizard Field A

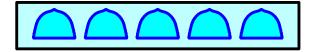
Chamber Model = Cultec R-902HD (Cultec Recharger® 902HD)

Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap Cap Storage= +2.8 cf x 2 x 5 rows = 27.6 cf

78.0" Wide + 9.0" Spacing = 87.0" C-C Row Spacing

11 Chambers/Row x 3.67' Long +0.52' Cap Length x 2 = 41.37' Row Length +12.0" End Stone x 2 = 43.37' Base Length


5 Rows x 78.0" Wide + 9.0" Spacing x 4 + 24.0" Side Stone x 2 = 39.50' Base Width 18.0" Stone Base + 48.0" Chamber Height + 12.0" Stone Cover = 6.50' Field Height


55 Chambers x 64.7 cf + 2.8 cf Cap Volume x 2 x 5 Rows = 3,588.0 cf Chamber Storage

11,134.4 cf Field - 3,588.0 cf Chambers = 7,546.4 cf Stone x 40.0% Voids = 3,018.5 cf Stone Storage

Chamber Storage + Stone Storage = 6,606.6 cf = 0.152 af Overall Storage Efficiency = 59.3% Overall System Size = 43.37' x 39.50' x 6.50'

55 Chambers 412.4 cy Field 279.5 cy Stone

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 24

Summary for Pond 8P: CB-2

Inflow Area = 0.038 ac, 64.49% Impervious, Inflow Depth = 1.25" for 2-year event

Inflow = 0.05 cfs @ 12.10 hrs, Volume= 0.004 af

Outflow = 0.05 cfs @ 12.10 hrs, Volume= 0.004 af, Atten= 0%, Lag= 0.0 min

Primary = 0.05 cfs @ 12.10 hrs, Volume= 0.004 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 344.16' @ 12.10 hrs

Primary OutFlow Max=0.05 cfs @ 12.10 hrs HW=344.16' (Free Discharge) 1=Culvert (Inlet Controls 0.05 cfs @ 0.95 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 25

Summary for Pond 10P: CB-1

Inflow Area = 0.176 ac, 21.20% Impervious, Inflow Depth = 0.19" for 2-year event

Inflow = 0.01 cfs @ 12.40 hrs, Volume= 0.003 af

Outflow = 0.01 cfs @ 12.40 hrs, Volume= 0.003 af, Atten= 0%, Lag= 0.0 min

Primary = 0.01 cfs @ 12.40 hrs, Volume= 0.003 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 344.09' @ 12.40 hrs

Device	Routing	Invert	Outlet Devices
	Primary		12.0" Round Culvert L= 8.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 344.04' / 343.77' S= 0.0338 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.01 cfs @ 12.40 hrs HW=344.09' (Free Discharge) 1=Culvert (Inlet Controls 0.01 cfs @ 0.62 fps)

Printed 2/28/2022

Page 26

Summary for Pond 12P: INFIL. A

Inflow Area =	0.214 ac, 28.89% Impervious, Inflow De	epth = 0.37" for 2-year event
Inflow =	0.05 cfs @ 12.10 hrs, Volume=	0.007 af
Outflow =	0.05 cfs @ 12.12 hrs, Volume=	0.007 af, Atten= 5%, Lag= 1.2 min
Discarded =	0.05 cfs @ 12.12 hrs, Volume=	0.007 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 343.29' @ 12.12 hrs Surf.Area= 0.009 ac Storage= 0.000 af

Plug-Flow detention time= 1.3 min calculated for 0.007 af (100% of inflow) Center-of-Mass det. time= 1.3 min (905.3 - 904.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	343.27'	0.007 af	11.50'W x 34.65'L x 2.71'H Field A
			0.025 af Overall - 0.008 af Embedded = 0.017 af x 40.0% Voids
#2A	343.77'	0.008 af	Cultec R-180 x 15 Inside #1
			Effective Size= 33.6"W x 20.0"H => 3.44 sf x 6.33'L = 21.8 cf
			Overall Size= 36.0"W x 20.5"H x 7.33'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 3.44 sf x 3 rows
	_	0.015 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	343.27'	8.270 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 340.00'
#2	Secondary	346.00'	12.0" Round Culvert
			L= 20.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 346.00' / 345.00' S= 0.0500 '/' Cc= 0.900
			n= 0.130, Flow Area= 0.79 sf

Discarded OutFlow Max=0.08 cfs @ 12.12 hrs HW=343.29' (Free Discharge) 1=Exfiltration (Controls 0.08 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=343.27' (Free Discharge) 2=Culvert (Controls 0.00 cfs)

Printed 2/28/2022

Page 27

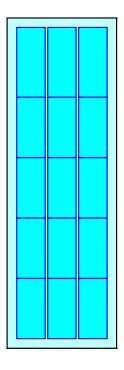
Pond 12P: INFIL. A - Chamber Wizard Field A

Chamber Model = Cultec R-180 (Cultec Recharger®180HD)

Effective Size= 33.6"W x 20.0"H => 3.44 sf x 6.33'L = 21.8 cf Overall Size= 36.0"W x 20.5"H x 7.33'L with 1.00' Overlap Row Length Adjustment= +1.00' x 3.44 sf x 3 rows

36.0" Wide + 3.0" Spacing = 39.0" C-C Row Spacing

5 Chambers/Row x 6.33' Long +1.00' Row Adjustment = 32.65' Row Length +12.0" End Stone x 2 = 34.65' Base Length


3 Rows x 36.0" Wide + 3.0" Spacing x 2 + 12.0" Side Stone x 2 = 11.50' Base Width 6.0" Stone Base + 20.5" Chamber Height + 6.0" Stone Cover = 2.71' Field Height

15 Chambers x 21.8 cf +1.00' Row Adjustment x 3.44 sf x 3 Rows = 336.9 cf Chamber Storage

1,079.2 cf Field - 336.9 cf Chambers = 742.3 cf Stone x 40.0% Voids = 296.9 cf Stone Storage

Chamber Storage + Stone Storage = 633.8 cf = 0.015 af Overall Storage Efficiency = 58.7% Overall System Size = 34.65' x 11.50' x 2.71'

15 Chambers 40.0 cy Field 27.5 cy Stone

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 28</u>

Summary for Pond 15P: CB-3

Inflow Area = 0.542 ac, 10.20% Impervious, Inflow Depth = 0.27" for 2-year event

Inflow = 0.06 cfs @ 12.32 hrs, Volume= 0.012 af

Outflow = 0.06 cfs @ 12.32 hrs, Volume= 0.012 af, Atten= 0%, Lag= 0.0 min

Primary = 0.06 cfs @ 12.32 hrs, Volume= 0.012 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 348.22' @ 12.32 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	348.09'	12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 348.09' / 347.79' S= 0.0200 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.06 cfs @ 12.32 hrs HW=348.22' (Free Discharge) 1=Culvert (Inlet Controls 0.06 cfs @ 0.98 fps)

Printed 2/28/2022

Page 29

Summary for Pond 16P: CB-4

Inflow Area = 0.126 ac, 51.69% Impervious, Inflow Depth = 0.81" for 2-year event

Inflow = 0.10 cfs @ 12.11 hrs, Volume= 0.008 af

Outflow = 0.10 cfs @ 12.11 hrs, Volume= 0.008 af, Atten= 0%, Lag= 0.0 min

Primary = 0.10 cfs @ 12.11 hrs, Volume= 0.008 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 348.26' @ 12.11 hrs

| Device Routing | Invert Outlet Devices | 348.09' | 12.0" | Round Culvert | L= 15.0' | CPP, projecting, no headwall, Ke= 0.900 | Inlet / Outlet Invert= 348.09' / 347.79' | S= 0.0200 '/' | Cc= 0.900 | n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.10 cfs @ 12.11 hrs HW=348.26' (Free Discharge) 1=Culvert (Inlet Controls 0.10 cfs @ 1.12 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 30

Summary for Pond 17P: DP4

Inflow Area = 0.998 ac, 30.41% Impervious, Inflow Depth = 0.80" for 2-year event

Inflow = 0.75 cfs @ 12.10 hrs, Volume= 0.066 af

Outflow = 0.75 cfs @ 12.10 hrs, Volume= 0.066 af, Atten= 0%, Lag= 0.0 min

Primary = 0.75 cfs @ 12.10 hrs, Volume= 0.066 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 348.15' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	347.69'	15.0" Round Culvert L= 43.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 347.69' / 347.26' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=0.75 cfs @ 12.10 hrs HW=348.15' (Free Discharge) 1=Culvert (Inlet Controls 0.75 cfs @ 1.83 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 31

Summary for Pond 18P: CB-6

Inflow Area = 0.075 ac, 69.15% Impervious, Inflow Depth = 1.44" for 2-year event

Inflow = 0.12 cfs @ 12.10 hrs, Volume= 0.009 af

Outflow = 0.12 cfs @ 12.10 hrs, Volume= 0.009 af, Atten= 0%, Lag= 0.0 min

Primary = 0.12 cfs @ 12.10 hrs, Volume= 0.009 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 357.08' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	356.89'	12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 356.89' / 356.59' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.12 cfs @ 12.10 hrs HW=357.08' (Free Discharge) 1=Culvert (Inlet Controls 0.12 cfs @ 1.17 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 32

Summary for Pond 19P: CB-5

Inflow Area = 0.255 ac, 51.42% Impervious, Inflow Depth = 1.72" for 2-year event

Inflow = 0.50 cfs @ 12.09 hrs, Volume= 0.037 af

Outflow = 0.50 cfs @ 12.09 hrs, Volume= 0.037 af, Atten= 0%, Lag= 0.0 min

Primary = 0.50 cfs @ 12.09 hrs, Volume= 0.037 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 357.29' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	356.89'	12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 356.89' / 356.59' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.50 cfs @ 12.09 hrs HW=357.29' (Free Discharge) 1=Culvert (Inlet Controls 0.50 cfs @ 1.70 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 33</u>

Summary for Pond 20P: DP7

Inflow Area = 0.330 ac, 55.47% Impervious, Inflow Depth = 1.66" for 2-year event

Inflow = 0.63 cfs @ 12.09 hrs, Volume= 0.046 af

Outflow = 0.63 cfs @ 12.09 hrs, Volume= 0.046 af, Atten= 0%, Lag= 0.0 min

Primary = 0.63 cfs @ 12.09 hrs, Volume= 0.046 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 356.94' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	356.49'	12.0" Round Culvert
			L= 159.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 356.49' / 347.79' S= 0.0547 '/' Cc= 0.900
			n= 0.012. Flow Area= 0.79 sf

Primary OutFlow Max=0.62 cfs @ 12.09 hrs HW=356.94' (Free Discharge) 1=Culvert (Inlet Controls 0.62 cfs @ 1.80 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 34</u>

Summary for Pond 27P: CB-10

Inflow Area = 0.681 ac, 24.93% Impervious, Inflow Depth = 0.33" for 2-year event

Inflow = 0.11 cfs @ 12.15 hrs, Volume= 0.019 af

Outflow = 0.11 cfs @ 12.15 hrs, Volume= 0.019 af, Atten= 0%, Lag= 0.0 min

Primary = 0.11 cfs @ 12.15 hrs, Volume= 0.019 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 362.14' @ 12.15 hrs

Device	Routing	Invert	Outlet Devices
-	Primary	361.96'	12.0" Round Culvert L= 89.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 361.96' / 359.29' S= 0.0300 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.11 cfs @ 12.15 hrs HW=362.14' (Free Discharge) 1=Culvert (Inlet Controls 0.11 cfs @ 1.14 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 35

Summary for Pond 28P: CB-9

Inflow Area = 0.191 ac, 7.80% Impervious, Inflow Depth = 0.91" for 2-year event

Inflow = 0.18 cfs @ 12.10 hrs, Volume= 0.014 af

Outflow = 0.18 cfs @ 12.10 hrs, Volume= 0.014 af, Atten= 0%, Lag= 0.0 min

Primary = 0.18 cfs @ 12.10 hrs, Volume= 0.014 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 360.58' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	360.34'	12.0" Round Culvert L= 31.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 360.34' / 360.03' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.18 cfs @ 12.10 hrs HW=360.57' (Free Discharge) 1=Culvert (Inlet Controls 0.18 cfs @ 1.30 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 36

Summary for Pond 29P: DP13

Inflow Area = 1.130 ac, 45.10% Impervious, Inflow Depth = 1.03" for 2-year event

Inflow = 1.27 cfs @ 12.10 hrs, Volume= 0.097 af

Outflow = 1.27 cfs @ 12.10 hrs, Volume= 0.097 af, Atten= 0%, Lag= 0.0 min

Primary = 1.27 cfs @ 12.10 hrs, Volume= 0.097 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 360.50' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	359.93'	18.0" Round Culvert L= 64.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 359.93' / 359.29' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf

Primary OutFlow Max=1.27 cfs @ 12.10 hrs HW=360.50' (Free Discharge) 1=Culvert (Inlet Controls 1.27 cfs @ 2.04 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 37</u>

Summary for Pond 30P: CB-8

Inflow Area = 0.540 ac, 56.59% Impervious, Inflow Depth = 0.96" for 2-year event

Inflow = 0.56 cfs @ 12.10 hrs, Volume= 0.043 af

Outflow = 0.56 cfs @ 12.10 hrs, Volume= 0.043 af, Atten= 0%, Lag= 0.0 min

Primary = 0.56 cfs @ 12.10 hrs, Volume= 0.043 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 360.75' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	360.33'	12.0" Round Culvert L= 30.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 360.33' / 360.03' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.55 cfs @ 12.10 hrs HW=360.75' (Free Discharge) 1=Culvert (Inlet Controls 0.55 cfs @ 1.75 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 38</u>

Summary for Pond 31P: CB-8

Inflow Area = 0.398 ac, 47.42% Impervious, Inflow Depth = 1.19" for 2-year event

Inflow = 0.53 cfs @ 12.10 hrs, Volume= 0.039 af

Outflow = 0.53 cfs @ 12.10 hrs, Volume= 0.039 af, Atten= 0%, Lag= 0.0 min

Primary = 0.53 cfs @ 12.10 hrs, Volume= 0.039 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 360.74' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	360.33'	12.0" Round Culvert L= 30.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 360.33' / 360.03' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.52 cfs @ 12.10 hrs HW=360.74' (Free Discharge) 1=Culvert (Inlet Controls 0.52 cfs @ 1.72 fps)

Printed 2/28/2022

Page 39

Summary for Link 1L: DP-A

Inflow Area = 1.476 ac, 24.16% Impervious, Inflow Depth = 0.00" for 2-year event

Inflow = 0.00 cfs @ 21.14 hrs, Volume= 0.000 af

Primary = 0.00 cfs @ 21.14 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Printed 2/28/2022

Page 40

Summary for Link 2L: DP-B

Inflow Area = 2.633 ac, 28.89% Impervious, Inflow Depth = 0.01" for 2-year event

Inflow = 0.00 cfs @ 21.14 hrs, Volume= 0.001 af

Primary = 0.00 cfs @ 21.14 hrs, Volume= 0.001 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Pond 6P: INFIL. B

Printed 2/28/2022

Page 41

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

5 ,	3 ,
Subcatchment2S: POST-B1	Runoff Area=35,830 sf 9.91% Impervious Runoff Depth=0.31" Tc=6.0 min CN=42 Runoff=0.09 cfs 0.021 af
Subcatchment5S: POST A1	Runoff Area=6,376 sf 6.09% Impervious Runoff Depth=0.31" Tc=6.0 min CN=42 Runoff=0.02 cfs 0.004 af
Subcatchment6S: POST A2	Runoff Area=14,477 sf 13.39% Impervious Runoff Depth=0.31" Tc=6.0 min UI Adjusted CN=42 Runoff=0.03 cfs 0.009 af
Subcatchment7S: POST A3	Runoff Area=1,656 sf 64.49% Impervious Runoff Depth=2.61" Tc=6.0 min CN=77 Runoff=0.11 cfs 0.008 af
Subcatchment9S: POST A4	Runoff Area=7,665 sf 21.20% Impervious Runoff Depth=0.79" Tc=6.0 min CN=52 Runoff=0.11 cfs 0.012 af
Subcatchment13S: POST A5	Runoff Area=5,473 sf 51.69% Impervious Runoff Depth=1.94" Tc=6.0 min CN=69 Runoff=0.27 cfs 0.020 af
Subcatchment14S: POST A6	Runoff Area=23,604 sf 10.20% Impervious Runoff Depth=0.97" Tc=6.0 min CN=55 Runoff=0.49 cfs 0.044 af
Subcatchment21S: POST A8	Runoff Area=11,091 sf 51.42% Impervious Runoff Depth=3.25" Tc=6.0 min CN=84 Runoff=0.94 cfs 0.069 af
Subcatchment22S: POST A7	Runoff Area=3,287 sf 69.15% Impervious Runoff Depth=2.88" Tc=6.0 min CN=80 Runoff=0.25 cfs 0.018 af
Subcatchment23S: POST-B2	Runoff Area=23,538 sf 56.59% Impervious Runoff Depth=2.18" Tc=6.0 min CN=72 Runoff=1.34 cfs 0.098 af
Subcatchment24S: POST-B4	Runoff Area=8,332 sf 7.80% Impervious Runoff Depth=2.10" Tc=6.0 min CN=71 Runoff=0.46 cfs 0.033 af
Subcatchment25S: POST-B3	Runoff Area=17,344 sf 47.42% Impervious Runoff Depth=2.52" Tc=6.0 min CN=76 Runoff=1.15 cfs 0.084 af
Subcatchment26S: POST-B5	Runoff Area=29,650 sf 24.93% Impervious Runoff Depth=1.09" Tc=6.0 min CN=57 Runoff=0.73 cfs 0.062 af
Pond 3P: DETENTION BASIN Discarded=0.58 cfs	Peak Elev=346.58' Storage=1,373 cf Inflow=1.94 cfs 0.160 af 0.160 af Primary=0.00 cfs 0.000 af Outflow=0.58 cfs 0.160 af

Discarded=0.53 cfs 0.235 af Primary=0.59 cfs 0.042 af Outflow=1.12 cfs 0.277 af

Peak Elev=358.03' Storage=0.071 af Inflow=3.67 cfs 0.277 af

Pond 8P: CB-2 Peak Elev=344.22' Inflow=0.11 cfs 0.008 af 12.0" Round Culvert n=0.012 L=27.0' S=0.0100 '/' Outflow=0.11 cfs 0.008 af

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 42

Pond 10P: CB-1	Peak Elev=344.22' Inflow=0.11 cfs 0.012 af
	12.0" Round Culvert n=0.012 L=8.0' S=0.0338 '/' Outflow=0.11 cfs 0.012 af

Pond 12P: INFIL. A	Peak Elev=343.86' Storage=0.003 af Inflow=0.23 cfs 0.020	af
	Discarded=0.09 cfs 0.020 af Secondary=0.00 cfs 0.000 af Outflow=0.09 cfs 0.020 a	af

Pond 15P: CB-3	Peak Elev=348.48' Inflow=0.49 cfs 0.04	44 af
	12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.49 cfs 0.04	44 af

Pond 16P: CB-4	Peak Elev=348.3	3' Inflow=0.27 cfs 0.020 af
	12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/'	Outflow=0.27 cfs 0.020 af

Pond 17P: DP4	Peak Elev=348.48' Inflow=1.94 cfs 0.151	l af
	15.0" Round Culvert n=0.012 L=43.0' S=0.0100 '/' Outflow=1.94 cfs 0.151	af

Pond 18P: CB-6				Peal	k Elev=357.17	" Inflow=0.25 cfs	0.018 af
	12.0"	Round Culvert	n=0.012	L=15.0'	S=0.0200 '/'	Outflow=0.25 cfs	0.018 af

Pond 19P: CB-5	Peak Elev=357.46' Inflow=0.94 cfs 0.069 af
	12.0" Pound Culvert n=0.012.1=15.0' S=0.0200.1/" Outflow=0.04.cfs.0.060.af

Pond 20P: DP7		Peak Elev=357.15'	Inflow=1.19 cfs 0.087 af
	12.0" Round Culvert n=0.012 L=15	9.0' S=0.0547 '/'	Outflow=1.19 cfs 0.087 af

Pond 27P: CB-10	Peak Elev=362.45' Inflow=0.73 cfs	0.062 af

	12.0"	Round Culvert	n=0.012	L=89.0'	S=0.0300 '/'	Outflow=0.73 cfs	0.062 af
D = 12 d 00D : OD 0				Daal	, Elav-200 70	-f 0 40 efe	0.000 -f

Pona 28P: CB-9		Peak Elev-360.72	11110W-0.46 CIS 0.033 at
	12.0" Round Culvert n=0.012 L=3	31.0' S=0.0100 '/'	Outflow=0.46 cfs 0.033 af

Pond 29P: DP13				Peal	k Elev=360.85	' Inflow=2.95 cfs	0.215 af
	18.0" Ro	ound Culvert	n=0.012	L=64.0'	S=0.0100 '/'	Outflow=2.95 cfs	0.215 af

Pond 30P: CB-8	Peak Elev=361.04' Inflow=1.34 cfs 0.09	8 af
	12.0" Round Culvert n=0.012 L=30.0' S=0.0100'/ Outflow=1.34 cfs 0.096	8 af

Link 1L: DP-A	Inflow=0.02 cfs 0.004 af

	-
Primary=0.02 cfs 0.0)04 af

Link 2L: DP-B	Inflow=0.67 cfs 0.063 af
	Primary=0.67 cfs 0.063 af

Total Runoff Area = 4.323 ac Runoff Volume = 0.482 af Average Runoff Depth = 1.34" 72.72% Pervious = 3.144 ac 27.28% Impervious = 1.179 ac

Printed 2/28/2022

Page 43

Summary for Subcatchment 2S: POST-B1

Runoff = 0.09 cfs @ 12.38 hrs, Volume= 0.021 af, Depth= 0.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

	A	rea (sf)	CN	Description				
		3,550	98	Roofs, HSC	3 A			
		22,530	39	>75% Gras	s cover, Go	ood, HSG A		
		9,750	30	Woods, Go	od, HSG A			
		35,830	42	Weighted Average				
		32,280		90.09% Pei	rvious Area			
		3,550		9.91% Impe	ervious Are	a		
	Tc	Length	Slope	,	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	6.0					Direct Entry		

Printed 2/28/2022

Page 44

Summary for Subcatchment 5S: POST A1

Runoff = 0.02 cfs @ 12.38 hrs, Volume= 0.004 af, Depth= 0.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

	Aı	rea (sf)	CN I	Description					
		5,531	39	>75% Gras	s cover, Go	ood, HSG A			
		457	30	Noods, Go	od, HSG A	1			
		388	98 I	Paved park	ing, HSG A	4			
-		6,376	42 \	Neighted A	verage				
		5,988	9	93.91% Per	rvious Area	a			
		388	(3.09% Impe	ervious Area	ea			
	Tc	Length	Slope	,	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	6.0					Direct Entry			

Printed 2/28/2022

Page 45

Summary for Subcatchment 6S: POST A2

Runoff = 0.03 cfs @ 12.38 hrs, Volume= 0.009 af, Depth= 0.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

Aı	rea (sf)	CN .	Adj Des	cription					
	11,475	39	>75	% Grass co	over, Good, HSG A				
	1,064	30	Woo	ds, Good, I	HSG A				
	1,938	98	Unc	onnected ro	oofs, HSG A				
	14,477	46	42 Wei	ghted Avera	age, UI Adjusted				
	12,539		86.6	1% Perviou	us Area				
	1,938		13.3	9% Impervi	ious Area				
	1,938		100	00% Uncor	nnected				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	sec) (cfs)					
6.0					Direct Entry				

Printed 2/28/2022

Page 46

Summary for Subcatchment 7S: POST A3

Runoff = 0.11 cfs @ 12.09 hrs, Volume= 0.008 af, Depth= 2.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

A	rea (sf)	CN	Description						
	588	39	>75% Gras	s cover, Go	ood, HSG A				
	1,068	98	Paved park	ing, HSG A	1				
	1,656	77	Weighted Average						
	588		35.51% Pervious Area						
	1,068		64.49% lmp	pervious Ar	ea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec) (cfs)						
6.0					Direct Entry				

6.0

Direct Entry,

Printed 2/28/2022

Page 47

Summary for Subcatchment 9S: POST A4

Runoff = 0.11 cfs @ 12.12 hrs, Volume= 0.012 af, Depth= 0.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

Α	rea (sf)	CN	Description							
	6,040	39	>75% Gras	s cover, Go	ood, HSG A					
	1,625	98	Paved parking, HSG A							
	7,665	52	2 Weighted Average							
	6,040		78.80% Pei	rvious Area						
	1,625		21.20% Imp	pervious Ar	ea					
_										
Tc	Length	Slope	,	Capacity	Description					
(min)	(feet)	(ft/ft)	f) (ft/sec) (cfs)							
6.0					Divost Fater					

6.0

Direct Entry,

Printed 2/28/2022

Page 48

Summary for Subcatchment 13S: POST A5

Runoff = 0.27 cfs @ 12.10 hrs, Volume= 0.020 af, Depth= 1.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

	Area (sf)	CN	Description							
	2,644	39	>75% Grass	s cover, Go	ood, HSG A					
	2,168	98	Paved parki	ng, HSG A	1					
	661	98	Unconnecte	d roofs, HS	SG A					
	5,473	69	Weighted A	verage						
	2,644		48.31% Per	vious Area						
	2,829		51.69% Imp	ervious Ar	ea					
	661		23.37% Und	connected						
7	Γc Length	Slope	e Velocity	Capacity	Description					
(mi	n) (feet)	(ft/ft	t) (ft/sec) (cfs)							
6	n		•		Direct Entry					

Printed 2/28/2022

Page 49

Summary for Subcatchment 14S: POST A6

Runoff = 0.49 cfs @ 12.11 hrs, Volume= 0.044 af, Depth= 0.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

Area (sf) CN	Description						
2,4	08 98	Paved park	ing, HSG A	1				
9,9	04 39	>75% Gras	s cover, Go	ood, HSG A				
9	20 80	>75% Gras	s cover, Go	ood, HSG D				
4,1	10 30	Woods, Go	od, HSG A					
6,2	62 77	Woods, Go	od, HSG D					
23,6	04 55	Weighted A	verage					
21,1	96	89.80% Per	vious Area	l				
2,4	08	10.20% Imp	ervious Ar	ea				
Tc Ler	ngth Slo	pe Velocity	Capacity	Description				
(min) (f	eet) (ft.	ft) (ft/sec)	t) (ft/sec) (cfs)					
6.0				Direct Entry				

6.0

Direct Entry,

Printed 2/28/2022

Page 50

Summary for Subcatchment 21S: POST A8

Runoff = 0.94 cfs @ 12.09 hrs, Volume= 0.069 af, Depth= 3.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

_	Area ((sf)	CN [Description							
_	1,4	-28	39 >	75% Gras	s cover, Go	ood, HSG A					
	3,9	60	80 >	75% Gras	s cover, Go	ood, HSG D					
	3,7	'53	98 F	Paved park	ing, HSG A	١					
	6	556	98 L	Jnconnecte	ed roofs, H	SG A					
_	1,2	294	98 L	Inconnecte	ed roofs, H	SG D					
	11,0	91	84 V	Weighted Average							
	5,3	888	4	8.58% Per	vious Area	I					
	5,7	'03	5	51.42% Imp	ervious Ar	ea					
	1,9	50	3	84.19% Und	connected						
	Tc Ler	ngth	Slope	Velocity	Capacity	Description					
_	(min) (f	eet)	(ft/ft)) (ft/sec) (cfs)							
	6.0					Direct Entry	•				

6.0

Direct Entry,

Printed 2/28/2022

Page 51

Summary for Subcatchment 22S: POST A7

Runoff = 0.25 cfs @ 12.09 hrs, Volume= 0.018 af, Depth= 2.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

_	Α	rea (sf)	CN	Description						
-		1,014	39	>75% Grass cover, Good, HSG A						
		2,273	98	Paved parking, HSG A						
		3,287	80	0 Weighted Average						
		1,014		30.85% Pervious Area						
		2,273		69.15% Impervious Area						
	_									
	Tc	Length	Slope	,	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Diverse Frage				

6.0

Printed 2/28/2022

Page 52

Summary for Subcatchment 23S: POST-B2

Runoff = 1.34 cfs @ 12.10 hrs, Volume= 0.098 af, Depth= 2.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

	Area (sf	CN	CN Description							
_	9,97	1 39	39 >75% Grass cover, Good, HSG A							
	247	7 30	Woods, God	Woods, Good, HSG A						
	6,536	6 98	Paved park	ing, HSG A	A					
_	6,784	4 98	Roofs, HSC	Roofs, HSG A						
_	23,538	8 72	72 Weighted Average							
	10,218	8	43.41% Pervious Area							
	13,320	0 56.59% Impervious Area								
	Tc Leng	th Slo	pe Velocity	Capacity	Description					
_	(min) (fee	et) (ft.	ft) (ft/sec)	(cfs)		_				
	6.0				Divert Entry					

Printed 2/28/2022

Page 53

Summary for Subcatchment 24S: POST-B4

Runoff = 0.46 cfs @ 12.10 hrs, Volume= 0.033 af, Depth= 2.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

A	rea (sf)	CN	Description			
	1,793	39	>75% Gras	s cover, Go	ood, HSG A	
	4,921	80	>75% Gras	s cover, Go	ood, HSG D	
	138	30	Woods, Go	od, HSG A		
	830	77	Woods, Go	od, HSG D		
	650	98	Roofs, HSC	βA		
	8,332	71	Weighted A	verage		
	7,682		92.20% Per	vious Area	l	
	650		7.80% Impe	ervious Area	a	
Tc	Length	Slope	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
6.0					Direct Entry,	

Printed 2/28/2022

Page 54

Runoff = 1.15 cfs @ 12.09 hrs, Volume= 0.084 af, Depth= 2.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

Summary for Subcatchment 25S: POST-B3

	Area (sf)	CN Description					
	5,059	39	>75% Gras	s cover, Go	Good, HSG A		
	3,462	80	>75% Gras	s cover, Go	Good, HSG D		
	177	30	Woods, Go	od, HSG A	Ą		
	422	77	Woods, Go	od, HSG D			
	6,064	98	Paved park	ing, HSG A	A		
	2,160	98	Roofs, HSC	6 A			
	17,344	76	76 Weighted Average				
	9,120		52.58% Per	vious Area	a		
	8,224 47.42% Impervious Area						
	Tc Length	Slop	e Velocity	Capacity	/ Description		
(m	in) (feet)	(ft/1	ft) (ft/sec)	(cfs)			
6	3.0				Direct Entry		

Printed 2/28/2022

Page 55

Summary for Subcatchment 26S: POST-B5

Runoff = 0.73 cfs @ 12.11 hrs, Volume= 0.062 af, Depth= 1.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.98"

Area	a (sf)	CN	CN Description					
15	5,074	39	>75% Gras	s cover, Go	ood, HSG A			
	915	80	>75% Gras	s cover, Go	ood, HSG D			
3	3,920	30	Woods, Go	od, HSG A	1			
2	2,348	77	Woods, Go	od, HSG D				
2	2,439	98	Paved park	ing, HSG A	A			
4	1,954	98	Roofs, HSG A					
29	9,650	57 Weighted Average						
22	2,257		75.07% Per	vious Area	a			
7	7,393		24.93% Imp	ervious Are	rea			
T		01	V/-194	0 :'6	Description			
	ength	Slope	,	Capacity	·			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry,			

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 56

Summary for Pond 3P: DETENTION BASIN

Inflow Area = 1.330 ac, 26.15% Impervious, Inflow Depth = 1.44" for 10-year event
Inflow = 1.94 cfs @ 12.10 hrs, Volume= 0.160 af

Outflow = 0.58 cfs @ 12.49 hrs, Volume= 0.160 af

Discarded = 0.58 cfs @ 12.49 hrs, Volume= 0.160 af

Discarded = 0.58 cfs @ 12.49 hrs, Volume= 0.160 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 346.58' @ 12.49 hrs Surf.Area= 2,554 sf Storage= 1,373 cf

Plug-Flow detention time= 15.2 min calculated for 0.160 af (100% of inflow)

Center-of-Mass det. time= 15.2 min (863.5 - 848.3)

Volume	Inve	rt Avail.	Storage	Storage Description	on		
#1	346.00	D' 14	4,542 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
346.0	00	2,163	220.0	0	0	2,163	
347.0	00	2,853	239.0	2,500	2,500	2,894	
348.0	00	3,600	258.0	3,219	5,719	3,685	
349.0	00	4,404	277.0	3,995	9,715	4,537	
350.0	00	5,264	296.0	4,828	14,542	5,450	
Device	Routing	Inve	ert Outle	et Devices			
#1	Discarded	346.0	00' 8.27	0 in/hr Exfiltration	over Surface ar	ea	
			Cond	ductivity to Ground	water Elevation =	343.00'	
#2	Primary	349.0	Head	20.0' long x 16.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63			

Discarded OutFlow Max=0.58 cfs @ 12.49 hrs HW=346.58' (Free Discharge) 1=Exfiltration (Controls 0.58 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=346.00' (Free Discharge) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 57</u>

Summary for Pond 6P: INFIL. B

Inflow Area = 1.810 ac, 37.52% Impervious, Inflow Depth = 1.84" for 10-year event Inflow = 3.67 cfs @ 12.10 hrs, Volume= 0.277 af

Outflow = 1.12 cfs @ 12.47 hrs, Volume= 0.277 af, Atten= 69%, Lag= 22.5 min Discarded = 0.53 cfs @ 12.47 hrs, Volume= 0.235 af

Primary = 0.59 cfs @ 12.47 hrs, Volume= 0.042 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 358.03' @ 12.47 hrs Surf.Area= 0.039 ac Storage= 0.071 af Flood Elev= 364.70' Surf.Area= 0.039 ac Storage= 0.152 af

Plug-Flow detention time= 33.2 min calculated for 0.277 af (100% of inflow) Center-of-Mass det. time= 33.2 min (882.7 - 849.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	355.00'	0.069 af	39.50'W x 43.37'L x 6.50'H Field A
			0.256 af Overall - 0.082 af Embedded = 0.173 af x 40.0% Voids
#2A	356.50'	0.082 af	Cultec R-902HD x 55 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			55 Chambers in 5 Rows
			Cap Storage= +2.8 cf x 2 x 5 rows = 27.6 cf
	•	0.450.5	T () A ()) O(

0.152 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	355.00'	8.270 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 350.00'
#2	Device 4	360.50'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Device 4	357.00'	5.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Primary	356.00'	12.0" Round Culvert
			L= 139.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 356.00' / 355.00' S= 0.0072 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf

Discarded OutFlow Max=0.53 cfs @ 12.47 hrs HW=358.03' (Free Discharge) 1=Exfiltration (Controls 0.53 cfs)

Primary OutFlow Max=0.59 cfs @ 12.47 hrs HW=358.03' (Free Discharge)

4=Culvert (Passes 0.59 cfs of 3.58 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

□3=Orifice/Grate (Orifice Controls 0.59 cfs @ 4.35 fps)

Page 58

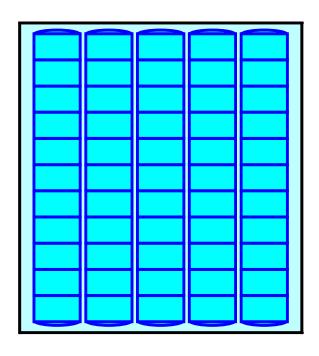
Pond 6P: INFIL. B - Chamber Wizard Field A

Chamber Model = Cultec R-902HD (Cultec Recharger® 902HD)

Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap Cap Storage= +2.8 cf x 2 x 5 rows = 27.6 cf

78.0" Wide + 9.0" Spacing = 87.0" C-C Row Spacing

11 Chambers/Row x 3.67' Long +0.52' Cap Length x 2 = 41.37' Row Length +12.0" End Stone x 2 = 43.37' Base Length


5 Rows x 78.0" Wide + 9.0" Spacing x 4 + 24.0" Side Stone x 2 = 39.50' Base Width 18.0" Stone Base + 48.0" Chamber Height + 12.0" Stone Cover = 6.50' Field Height

55 Chambers x 64.7 cf + 2.8 cf Cap Volume x 2 x 5 Rows = 3,588.0 cf Chamber Storage

11,134.4 cf Field - 3,588.0 cf Chambers = 7,546.4 cf Stone x 40.0% Voids = 3,018.5 cf Stone Storage

Chamber Storage + Stone Storage = 6,606.6 cf = 0.152 af Overall Storage Efficiency = 59.3% Overall System Size = 43.37' x 39.50' x 6.50'

55 Chambers 412.4 cy Field 279.5 cy Stone

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 59

Summary for Pond 8P: CB-2

Inflow Area = 0.038 ac, 64.49% Impervious, Inflow Depth = 2.61" for 10-year event

Inflow = 0.11 cfs @ 12.09 hrs, Volume= 0.008 af

Outflow = 0.11 cfs @ 12.09 hrs, Volume= 0.008 af, Atten= 0%, Lag= 0.0 min

Primary = 0.11 cfs @ 12.09 hrs, Volume= 0.008 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 344.22' @ 12.09 hrs

 Device
 Routing
 Invert
 Outlet Devices

 #1
 Primary
 344.04'
 12.0" Round Culvert

 L= 27.0'
 CPP, projecting, no headwall, Ke= 0.900

 Inlet / Outlet Invert= 344.04' / 343.77'
 S= 0.0100 '/'
 Cc= 0.900

 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.11 cfs @ 12.09 hrs HW=344.22' (Free Discharge) 1=Culvert (Inlet Controls 0.11 cfs @ 1.15 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 60

Summary for Pond 10P: CB-1

Inflow Area = 0.176 ac, 21.20% Impervious, Inflow Depth = 0.79" for 10-year event

Inflow = 0.11 cfs @ 12.12 hrs, Volume= 0.012 af

Outflow = 0.11 cfs (a) 12.12 hrs, Volume= 0.012 af, Atten= 0%, Lag= 0.0 min

Primary = 0.11 cfs @ 12.12 hrs, Volume= 0.012 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 344.22' @ 12.12 hrs

 Device
 Routing
 Invert
 Outlet Devices

 #1
 Primary
 344.04'
 12.0" Round Culvert

 L= 8.0'
 CPP, projecting, no headwall, Ke= 0.900

 Inlet / Outlet Invert= 344.04' / 343.77'
 S= 0.0338 '/'
 Cc= 0.900

 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.11 cfs @ 12.12 hrs HW=344.22' (Free Discharge) 1=Culvert (Inlet Controls 0.11 cfs @ 1.14 fps)

Printed 2/28/2022

<u>Page 61</u>

Summary for Pond 12P: INFIL. A

Inflow Area =	0.214 ac, 28.89% Impervious, Inflow D	epth = 1.12" for 10-year event
Inflow =	0.23 cfs @ 12.11 hrs, Volume=	0.020 af
Outflow =	0.09 cfs @ 12.45 hrs, Volume=	0.020 af, Atten= 60%, Lag= 20.6 min
Discarded =	0.09 cfs @ 12.45 hrs, Volume=	0.020 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 343.86' @ 12.45 hrs Surf.Area= 0.009 ac Storage= 0.003 af

Plug-Flow detention time= 6.0 min calculated for 0.020 af (100% of inflow) Center-of-Mass det. time= 6.2 min (880.4 - 874.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	343.27'	0.007 af	11.50'W x 34.65'L x 2.71'H Field A
			0.025 af Overall - 0.008 af Embedded = 0.017 af x 40.0% Voids
#2A	343.77'	0.008 af	Cultec R-180 x 15 Inside #1
			Effective Size= 33.6"W x 20.0"H => 3.44 sf x 6.33'L = 21.8 cf
			Overall Size= 36.0"W x 20.5"H x 7.33'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 3.44 sf x 3 rows
	_	0.015 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	343.27'	8.270 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 340.00'
#2	Secondary	346.00'	12.0" Round Culvert
			L= 20.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 346.00' / 345.00' S= 0.0500 '/' Cc= 0.900
			n= 0.130, Flow Area= 0.79 sf

Discarded OutFlow Max=0.09 cfs @ 12.45 hrs HW=343.86' (Free Discharge) **1=Exfiltration** (Controls 0.09 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=343.27' (Free Discharge) 2=Culvert (Controls 0.00 cfs)

Page 62

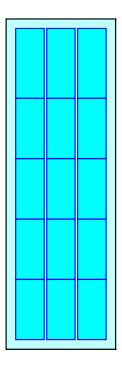
Pond 12P: INFIL. A - Chamber Wizard Field A

Chamber Model = Cultec R-180 (Cultec Recharger®180HD)

Effective Size= 33.6"W x 20.0"H => 3.44 sf x 6.33'L = 21.8 cf Overall Size= 36.0"W x 20.5"H x 7.33'L with 1.00' Overlap Row Length Adjustment= +1.00' x 3.44 sf x 3 rows

36.0" Wide + 3.0" Spacing = 39.0" C-C Row Spacing

5 Chambers/Row x 6.33' Long +1.00' Row Adjustment = 32.65' Row Length +12.0" End Stone x 2 = 34.65' Base Length


3 Rows x 36.0" Wide + 3.0" Spacing x 2 + 12.0" Side Stone x 2 = 11.50' Base Width 6.0" Stone Base + 20.5" Chamber Height + 6.0" Stone Cover = 2.71' Field Height

15 Chambers x 21.8 cf +1.00' Row Adjustment x 3.44 sf x 3 Rows = 336.9 cf Chamber Storage

1,079.2 cf Field - 336.9 cf Chambers = 742.3 cf Stone x 40.0% Voids = 296.9 cf Stone Storage

Chamber Storage + Stone Storage = 633.8 cf = 0.015 af Overall Storage Efficiency = 58.7% Overall System Size = 34.65' x 11.50' x 2.71'

15 Chambers 40.0 cy Field 27.5 cy Stone

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 63

Summary for Pond 15P: CB-3

Inflow Area = 0.542 ac, 10.20% Impervious, Inflow Depth = 0.97" for 10-year event

Inflow = 0.49 cfs @ 12.11 hrs, Volume= 0.044 af

Outflow = 0.49 cfs @ 12.11 hrs, Volume= 0.044 af, Atten= 0%, Lag= 0.0 min

Primary = 0.49 cfs @ 12.11 hrs, Volume= 0.044 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 348.48' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 348.09' / 347.79' S= 0.0200 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.47 cfs @ 12.11 hrs HW=348.48' (Free Discharge) 1=Culvert (Inlet Controls 0.47 cfs @ 1.67 fps)

5293-POST

Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 64</u>

Summary for Pond 16P: CB-4

Inflow Area = 0.126 ac, 51.69% Impervious, Inflow Depth = 1.94" for 10-year event

Inflow = 0.27 cfs @ 12.10 hrs, Volume= 0.020 af

Outflow = 0.27 cfs (a) 12.10 hrs, Volume= 0.020 af, Atten= 0%, Lag= 0.0 min

Primary = 0.27 cfs @ 12.10 hrs, Volume= 0.020 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 348.38' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	348.09'	12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 348.09' / 347.79' S= 0.0200 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.27 cfs @ 12.10 hrs HW=348.38' (Free Discharge) 1=Culvert (Inlet Controls 0.27 cfs @ 1.45 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 65

Summary for Pond 17P: DP4

Inflow Area = 0.998 ac, 30.41% Impervious, Inflow Depth = 1.82" for 10-year event

Inflow = 1.94 cfs @ 12.10 hrs, Volume= 0.151 af

Outflow = 1.94 cfs @ 12.10 hrs, Volume= 0.151 af, Atten= 0%, Lag= 0.0 min

Primary = 1.94 cfs @ 12.10 hrs, Volume= 0.151 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 348.48' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	347.69'	15.0" Round Culvert L= 43.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 347.69' / 347.26' S= 0.0100'/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=1.93 cfs @ 12.10 hrs HW=348.47' (Free Discharge) 1=Culvert (Inlet Controls 1.93 cfs @ 2.38 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 66

Summary for Pond 18P: CB-6

Inflow Area = 0.075 ac, 69.15% Impervious, Inflow Depth = 2.88" for 10-year event

Inflow = 0.25 cfs @ 12.09 hrs, Volume= 0.018 af

Outflow = 0.25 cfs (a) 12.09 hrs, Volume= 0.018 af, Atten= 0%, Lag= 0.0 min

Primary = 0.25 cfs @ 12.09 hrs, Volume= 0.018 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 357.17' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	356.89'	12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 356.89' / 356.59' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.24 cfs @ 12.09 hrs HW=357.16' (Free Discharge) 1=Culvert (Inlet Controls 0.24 cfs @ 1.40 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 67

Summary for Pond 19P: CB-5

Inflow Area = 0.255 ac, 51.42% Impervious, Inflow Depth = 3.25" for 10-year event

Inflow = 0.94 cfs @ 12.09 hrs, Volume= 0.069 af

Outflow = 0.94 cfs @ 12.09 hrs, Volume= 0.069 af, Atten= 0%, Lag= 0.0 min

Primary = 0.94 cfs @ 12.09 hrs, Volume= 0.069 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 357.46' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	356.89'	12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 356.89' / 356.59' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.92 cfs @ 12.09 hrs HW=357.45' (Free Discharge) 1=Culvert (Inlet Controls 0.92 cfs @ 2.02 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 68</u>

Summary for Pond 20P: DP7

Inflow Area = 0.330 ac, 55.47% Impervious, Inflow Depth = 3.17" for 10-year event

Inflow = 1.19 cfs @ 12.09 hrs, Volume= 0.087 af

Outflow = 1.19 cfs @ 12.09 hrs, Volume= 0.087 af, Atten= 0%, Lag= 0.0 min

Primary = 1.19 cfs @ 12.09 hrs, Volume= 0.087 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 357.15' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	356.49'	12.0" Round Culvert
			L= 159.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 356.49' / 347.79' S= 0.0547 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.17 cfs @ 12.09 hrs HW=357.14' (Free Discharge) 1=Culvert (Inlet Controls 1.17 cfs @ 2.17 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 69

Summary for Pond 27P: CB-10

Inflow Area = 0.681 ac, 24.93% Impervious, Inflow Depth = 1.09" for 10-year event

Inflow = 0.73 cfs @ 12.11 hrs, Volume= 0.062 af

Outflow = 0.73 cfs @ 12.11 hrs, Volume= 0.062 af, Atten= 0%, Lag= 0.0 min

Primary = 0.73 cfs @ 12.11 hrs, Volume= 0.062 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 362.45' @ 12.11 hrs

 Device
 Routing
 Invert
 Outlet Devices

 #1
 Primary
 361.96'
 12.0" Round Culvert

 L= 89.0'
 CPP, projecting, no headwall, Ke= 0.900

 Inlet / Outlet Invert= 361.96' / 359.29'
 S= 0.0300 '/'
 Cc= 0.900

 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.71 cfs @ 12.11 hrs HW=362.45' (Free Discharge) 1=Culvert (Inlet Controls 0.71 cfs @ 1.87 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 70

Summary for Pond 28P: CB-9

Inflow Area = 0.191 ac, 7.80% Impervious, Inflow Depth = 2.10" for 10-year event

Inflow = 0.46 cfs @ 12.10 hrs, Volume= 0.033 af

Outflow = 0.46 cfs @ 12.10 hrs, Volume= 0.033 af, Atten= 0%, Lag= 0.0 min

Primary = 0.46 cfs @ 12.10 hrs, Volume= 0.033 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 360.72' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	360.34'	12.0" Round Culvert
			L= 31.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 360.34' / 360.03' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.45 cfs @ 12.10 hrs HW=360.72' (Free Discharge) 1=Culvert (Inlet Controls 0.45 cfs @ 1.65 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 71</u>

Summary for Pond 29P: DP13

Inflow Area = 1.130 ac, 45.10% Impervious, Inflow Depth = 2.29" for 10-year event

Inflow = 2.95 cfs @ 12.10 hrs, Volume= 0.215 af

Outflow = 2.95 cfs @ 12.10 hrs, Volume= 0.215 af, Atten= 0%, Lag= 0.0 min

Primary = 2.95 cfs @ 12.10 hrs, Volume= 0.215 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 360.85' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	359.93'	18.0" Round Culvert L= 64.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 359.93' / 359.29' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf

Primary OutFlow Max=2.91 cfs @ 12.10 hrs HW=360.85' (Free Discharge) 1=Culvert (Inlet Controls 2.91 cfs @ 2.57 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 72</u>

Summary for Pond 30P: CB-8

Inflow Area = 0.540 ac, 56.59% Impervious, Inflow Depth = 2.18" for 10-year event

Inflow = 1.34 cfs @ 12.10 hrs, Volume= 0.098 af

Outflow = 1.34 cfs @ 12.10 hrs, Volume= 0.098 af, Atten= 0%, Lag= 0.0 min

Primary = 1.34 cfs @ 12.10 hrs, Volume= 0.098 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 361.04' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	360.33'	12.0" Round Culvert L= 30.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 360.33' / 360.03' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.33 cfs @ 12.10 hrs HW=361.03' (Free Discharge) 1=Culvert (Inlet Controls 1.33 cfs @ 2.25 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 73

Summary for Pond 31P: CB-8

Inflow Area = 0.398 ac, 47.42% Impervious, Inflow Depth = 2.52" for 10-year event

Inflow = 1.15 cfs @ 12.09 hrs, Volume= 0.084 af

Outflow = 1.15 cfs (a) 12.09 hrs, Volume= 0.084 af, Atten= 0%, Lag= 0.0 min

Primary = 1.15 cfs @ 12.09 hrs, Volume= 0.084 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 360.97' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	360.33'	12.0" Round Culvert
			L= 30.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 360.33' / 360.03' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.13 cfs @ 12.09 hrs HW=360.97' (Free Discharge) 1=Culvert (Inlet Controls 1.13 cfs @ 2.15 fps)

Printed 2/28/2022

Page 74

Summary for Link 1L: DP-A

Inflow Area = 1.476 ac, 24.16% Impervious, Inflow Depth = 0.03" for 10-year event

Inflow = 0.02 cfs @ 12.38 hrs, Volume= 0.004 af

Primary = 0.02 cfs @ 12.38 hrs, Volume= 0.004 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

5293-POST

Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 75

Summary for Link 2L: DP-B

Inflow Area = 2.633 ac, 28.89% Impervious, Inflow Depth = 0.29" for 10-year event

Inflow = 0.67 cfs @ 12.44 hrs, Volume= 0.063 af

Primary = 0.67 cfs (a) 12.44 hrs, Volume= 0.063 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Pond 6P: INFIL. B

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 76

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment2S: POST-B1	Runoff Area=35,830 sf 9.91% Impervious Runoff Depth=0.63" Tc=6.0 min CN=42 Runoff=0.27 cfs 0.043 af
Subcatchment5S: POST A1	Runoff Area=6,376 sf 6.09% Impervious Runoff Depth=0.63" Tc=6.0 min CN=42 Runoff=0.05 cfs 0.008 af
Subcatchment6S: POST A2	Runoff Area=14,477 sf 13.39% Impervious Runoff Depth=0.63" Tc=6.0 min UI Adjusted CN=42 Runoff=0.11 cfs 0.018 af
Subcatchment7S: POST A3	Runoff Area=1,656 sf 64.49% Impervious Runoff Depth=3.52" Tc=6.0 min CN=77 Runoff=0.15 cfs 0.011 af
Subcatchment9S: POST A4	Runoff Area=7,665 sf 21.20% Impervious Runoff Depth=1.32" Tc=6.0 min CN=52 Runoff=0.22 cfs 0.019 af
Subcatchment13S: POST A5	Runoff Area=5,473 sf 51.69% Impervious Runoff Depth=2.75" Tc=6.0 min CN=69 Runoff=0.39 cfs 0.029 af
Subcatchment14S: POST A6	Runoff Area=23,604 sf 10.20% Impervious Runoff Depth=1.55" Tc=6.0 min CN=55 Runoff=0.86 cfs 0.070 af
Subcatchment21S: POST A8	Runoff Area=11,091 sf 51.42% Impervious Runoff Depth=4.24" Tc=6.0 min CN=84 Runoff=1.22 cfs 0.090 af
Subcatchment22S: POST A7	Runoff Area=3,287 sf 69.15% Impervious Runoff Depth=3.83" Tc=6.0 min CN=80 Runoff=0.33 cfs 0.024 af
Subcatchment23S: POST-B2	Runoff Area=23,538 sf 56.59% Impervious Runoff Depth=3.03" Tc=6.0 min CN=72 Runoff=1.88 cfs 0.137 af
Subcatchment24S: POST-B4	Runoff Area=8,332 sf 7.80% Impervious Runoff Depth=2.94" Tc=6.0 min CN=71 Runoff=0.64 cfs 0.047 af
Subcatchment25S: POST-B3	Runoff Area=17,344 sf 47.42% Impervious Runoff Depth=3.42" Tc=6.0 min CN=76 Runoff=1.57 cfs 0.114 af
Subcatchment26S: POST-B5	Runoff Area=29,650 sf 24.93% Impervious Runoff Depth=1.71" Tc=6.0 min CN=57 Runoff=1.23 cfs 0.097 af
Pond 3P: DETENTION BASIN	Peak Elev=346.99' Storage=2,460 cf Inflow=2.89 cfs 0.230 af

Pond 8P: CB-2 Peak Elev=344.25' Inflow=0.15 cfs 0.011 af

12.0" Round Culvert n=0.012 L=27.0' S=0.0100 '/' Outflow=0.15 cfs 0.011 af

Peak Elev=359.29' Storage=0.108 af Inflow=5.32 cfs 0.394 af

Discarded=0.70 cfs 0.230 af Primary=0.00 cfs 0.000 af Outflow=0.70 cfs 0.230 af

Discarded=0.61 cfs 0.295 af Primary=0.95 cfs 0.099 af Outflow=1.56 cfs 0.394 af

Peak Elev=344.30' Inflow=0.22 cfs 0.019 af

Peak Elev=361.22' Inflow=1.88 cfs 0.137 af

Peak Elev=361.11' Inflow=1.57 cfs 0.114 af

Pond 10P: CB-1

Pond 30P: CB-8

Pond 31P: CB-8

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 77

12.0" Round Culvert n=0.012 L=8.0' S=0.0338 '/' Outflow=0.22 cfs 0.019 af Peak Elev=344.38' Storage=0.006 af Inflow=0.38 cfs 0.030 af Pond 12P: INFIL. A Discarded=0.10 cfs 0.030 af Secondary=0.00 cfs 0.000 af Outflow=0.10 cfs 0.030 af **Pond 15P: CB-3** Peak Elev=348.63' Inflow=0.86 cfs 0.070 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.86 cfs 0.070 af **Pond 16P: CB-4** Peak Elev=348.44' Inflow=0.39 cfs 0.029 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.39 cfs 0.029 af Peak Elev=348.68' Inflow=2.80 cfs 0.213 af Pond 17P: DP4 15.0" Round Culvert n=0.012 L=43.0' S=0.0100 '/' Outflow=2.80 cfs 0.213 af **Pond 18P: CB-6** Peak Elev=357.21' Inflow=0.33 cfs 0.024 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.33 cfs 0.024 af Peak Elev=357.56' Inflow=1.22 cfs 0.090 af Pond 19P: CB-5 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=1.22 cfs 0.090 af Peak Elev=357.27' Inflow=1.55 cfs 0.114 af Pond 20P: DP7 12.0" Round Culvert n=0.012 L=159.0' S=0.0547 '/' Outflow=1.55 cfs 0.114 af Peak Elev=362.63' Inflow=1.23 cfs 0.097 af Pond 27P: CB-10 12.0" Round Culvert n=0.012 L=89.0' S=0.0300 '/' Outflow=1.23 cfs 0.097 af Peak Elev=360.80' Inflow=0.64 cfs 0.047 af Pond 28P: CB-9 12.0" Round Culvert n=0.012 L=31.0' S=0.0100'/' Outflow=0.64 cfs 0.047 af Pond 29P: DP13 Peak Elev=361.06' Inflow=4.09 cfs 0.297 af 18.0" Round Culvert n=0.012 L=64.0' S=0.0100 '/' Outflow=4.09 cfs 0.297 af

Link 1L: DP-AInflow=0.05 cfs 0.008 af
Primary=0.05 cfs 0.008 af

Link 2L: DP-BInflow=1.16 cfs 0.142 af
Primary=1.16 cfs 0.142 af

Total Runoff Area = 4.323 ac Runoff Volume = 0.706 af Average Runoff Depth = 1.96" 72.72% Pervious = 3.144 ac 27.28% Impervious = 1.179 ac

12.0" Round Culvert n=0.012 L=30.0' S=0.0100 '/' Outflow=1.88 cfs 0.137 af

12.0" Round Culvert n=0.012 L=30.0' S=0.0100'/ Outflow=1.57 cfs 0.114 af

Printed 2/28/2022

Page 78

Summary for Subcatchment 2S: POST-B1

Runoff = 0.27 cfs @ 12.17 hrs, Volume= 0.043 af, Depth= 0.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

Aı	rea (sf)	CN	Description					
	3,550	98	Roofs, HSG A					
	22,530	39	>75% Gras	s cover, Go	ood, HSG A			
	9,750	30	Woods, Go	od, HSG A				
	35,830 42 Weighted Average							
	32,280		90.09% Per	rvious Area				
	3,550		9.91% Impervious Area					
Tc	Length	Slope	,	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec) (cfs)					
6.0					Direct Entry			

Printed 2/28/2022

Page 79

Summary for Subcatchment 5S: POST A1

Runoff = 0.05 cfs @ 12.17 hrs, Volume= 0.008 af, Depth= 0.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

_	Α	rea (sf)	CN	Description				
		5,531	39	>75% Grass cover, Good, HSG A				
		457	30	Woods, Good, HSG A				
		388	98	Paved parking, HSG A				
_		6,376	42	Weighted Average				
		5,988		93.91% Pervious Area				
		388		6.09% Impervious Area				
	Тс	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	t) (ft/sec) (cfs)				
_	6.0	•			•	Direct Entry		

Printed 2/28/2022

Page 80

Summary for Subcatchment 6S: POST A2

Runoff = 0.11 cfs @ 12.17 hrs, Volume= 0.018 af, Depth= 0.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

	Aı	rea (sf)	CN	Adj	Description						
		11,475	39		>75% Grass cover, Good, HSG A						
		1,064	30		Wood	ls, Good, I	HSG A				
		1,938	98		Unco	nnected ro	oofs, HSG A				
		14,477	46	42	Weighted Average, UI Adjusted						
		12,539			86.61% Pervious Area						
		1,938			13.39% Impervious Area						
		1,938			100.00% Unconnected						
	Tc	Length	Slope	e Vel	ocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)) (ft/	t/sec) (cfs)						
	0.0						Discot Frates				

Printed 2/28/2022

Page 81

Summary for Subcatchment 7S: POST A3

Runoff = 0.15 cfs @ 12.09 hrs, Volume= 0.011 af, Depth= 3.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

Aı	rea (sf)	CN	Description							
	588	39	>75% Grass cover, Good, HSG A							
	1,068	98	Paved parking, HSG A							
	1,656	77	Weighted Average							
	588	;	35.51% Pervious Area							
	1,068	(64.49% Impervious Area							
_										
Tc	Length	Slope	,	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Direct Entry,					

Printed 2/28/2022

Page 82

Summary for Subcatchment 9S: POST A4

Runoff = 0.22 cfs @ 12.11 hrs, Volume= 0.019 af, Depth= 1.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

_	Α	rea (sf)	CN	Description							
		6,040	39	>75% Grass cover, Good, HSG A							
		1,625	98	Paved parking, HSG A							
		7,665	52	Weighted Average							
		6,040		78.80% Pervious Area							
		1,625		21.20% Impervious Area							
	_										
	Tc	Length	Slope	,	Capacity	Description					
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.0					Discot Fates					

6.0

Printed 2/28/2022

Page 83

Summary for Subcatchment 13S: POST A5

Runoff = 0.39 cfs @ 12.10 hrs, Volume= 0.029 af, Depth= 2.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

	Area (sf)	CN	Description								
	2,644	39	>75% Grass cover, Good, HSG A								
	2,168	98	Paved parking, HSG A								
	661	98	Unconnecte	ed roofs, HS	SG A						
	5,473	69	Weighted Average								
	2,644		48.31% Pervious Area								
	2,829		51.69% Impervious Area								
	661		23.37% Unconnected								
Tc	Length	Slope	e Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
6.0					Direct Entry						

Printed 2/28/2022

Page 84

Summary for Subcatchment 14S: POST A6

Runoff 0.86 cfs @ 12.10 hrs, Volume= 0.070 af, Depth= 1.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

	Area	(sf)	CN	Description								
	2,4	408	98	Paved parking, HSG A								
	9,9	904	39	>75% Grass cover, Good, HSG A								
	9	920	80	>75% Gras	s cover, Go	ood, HSG D						
	4,1	110	30	Woods, Go	od, HSG A							
	6,2	262	77	Woods, Go	od, HSG D							
	23,6	304	55	Weighted A	verage							
	21,1	196	89.80% Pervious Area									
	2,4	408	10.20% Impervious Area									
	Tc Le	ngth	Slope	e Velocity	Capacity	Description						
_	(min) (1	feet)	(ft/ft) (ft/sec)	(cfs)							
	6.0					Direct Entry						

Printed 2/28/2022

Page 85

Summary for Subcatchment 21S: POST A8

Runoff = 1.22 cfs @ 12.09 hrs, Volume= 0.090 af, Depth= 4.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

	Area (st	f) CN	Description									
	1,42	8 39	>75% Grass cover, Good, HSG A									
	3,96	0 80	>75% Grass cover, Good, HSG D	>75% Grass cover, Good, HSG D								
	3,75	3 98	Paved parking, HSG A									
	65	6 98	Unconnected roofs, HSG A									
	1,29	4 98	Unconnected roofs, HSG D									
	11,09	1 84	Weighted Average									
	5,38	8	48.58% Pervious Area									
	5,70	3	51.42% Impervious Area									
	1,95	0	34.19% Unconnected									
	Tc Leng											
((min) (fee	et) (ft	/ft) (ft/sec) (cfs)									
	6.0		Direct Entry									

6.0

Printed 2/28/2022

Page 86

Summary for Subcatchment 22S: POST A7

Runoff = 0.33 cfs @ 12.09 hrs, Volume= 0.024 af, Depth= 3.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

Α	rea (sf)	CN	Description								
	1,014	39	>75% Grass cover, Good, HSG A								
	2,273	98	Paved parking, HSG A								
	3,287	80	Weighted Average								
	1,014		30.85% Pervious Area								
	2,273		69.15% Impervious Area								
_				_							
Tc	Length	Slope	,	Capacity	•						
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)							
6.0					Direct Enter						

6.0

Printed 2/28/2022

Page 87

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 23S: POST-B2

Runoff = 1.88 cfs @ 12.09 hrs, Volume= 0.137 af, Depth= 3.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

	Ar	ea (sf)	CN	l Description				
-		9,971	39	>75% Grass	cover, Go	ood, HSG A		
		247	30	Woods, Goo	od, HSG A	1		
		6,536	98	Paved parki	ng, HSG A	A		
_		6,784	98	Roofs, HSG A				
-		23,538	72	Weighted Average				
		10,218		43.41% Pervious Area				
		13,320		rea				
	Тс	Length	Slope	e Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	6.0					Direct Enter		

Printed 2/28/2022

Page 88

Summary for Subcatchment 24S: POST-B4

Runoff = 0.64 cfs @ 12.09 hrs, Volume= 0.047 af, Depth= 2.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

A	rea (sf)	CN	Description			
	1,793	39	>75% Gras	s cover, Go	ood, HSG A	
	4,921	80	>75% Gras	s cover, Go	ood, HSG D	
	138	30	Woods, Go	od, HSG A		
	830	77	Woods, Go	od, HSG D		
	650	98	Roofs, HSC	βA		
	8,332	71	Weighted A	verage		
	7,682	92.20% Pervious Area			l	
	650	50 7.80% Impervious Area			a	
Tc	Length	Slope	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
6.0					Direct Entry,	

Printed 2/28/2022

Page 89

Summary for Subcatchment 25S: POST-B3

Runoff = 1.57 cfs @ 12.09 hrs, Volume= 0.114 af, Depth= 3.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

A	rea (sf)	CN	Description		
	5,059	39	>75% Gras	s cover, Go	ood, HSG A
	3,462	80	>75% Gras	s cover, Go	ood, HSG D
	177	30	Woods, Go	od, HSG A	1
	422	77	Woods, Go	od, HSG D	
	6,064	98	Paved park	ing, HSG A	A
	2,160	98	Roofs, HSG	βA	
	17,344	76	Weighted A	verage	
	9,120		52.58% Per	vious Area	a
	8,224		47.42% Imp	pervious Ar	rea
Tc	Length	Slop	•	Capacity	Description
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
6.0					Direct Entry,

Printed 2/28/2022

Page 90

Summary for Subcatchment 26S: POST-B5

Runoff = 1.23 cfs @ 12.10 hrs, Volume= 0.097 af, Depth= 1.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=6.05"

Area (sf)	CN	Description		
15,074	39	>75% Grass	cover, Go	ood, HSG A
915	80	>75% Grass	s cover, Go	ood, HSG D
3,920	30	Woods, Goo	od, HSG A	
2,348	77	Woods, Goo	od, HSG D	
2,439	98	Paved parki	ng, HSG A	Ą
4,954	98	Roofs, HSG	A	
29,650	57	Weighted Av	verage	
22,257		75.07% Per	vious Area	a e e e e e e e e e e e e e e e e e e e
7,393		24.93% Imp	ervious Ar	rea
Tc Length	Slop		Capacity	Description
(min) (feet)	(ft/	ft) (ft/sec)	(cfs)	
6.0				Direct Entry,

Printed 2/28/2022

Page 91

Summary for Pond 3P: DETENTION BASIN

Inflow Area = 1.330 ac, 26.15% Impervious, Inflow Depth = 2.08" for 25-year event Inflow = 2.89 cfs @ 12.10 hrs, Volume= 0.230 af

Outflow = 0.70 cfs @ 12.53 hrs, Volume= 0.230 af, Atten= 76%, Lag= 26.1 min

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 346.99' @ 12.53 hrs Surf.Area= 2,843 sf Storage= 2,460 cf

Plug-Flow detention time= 25.4 min calculated for 0.230 af (100% of inflow)

Center-of-Mass det. time= 25.4 min (866.5 - 841.1)

Volume	Inver	t Avail.S	Storage	Storage Descripti	on		
#1	346.00	' 14	,542 cf	Custom Stage D	ata (Irregular)Lis	ted below (Recalc)	
Elevatio		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
346.0	00	2,163	220.0	0	0	2,163	
347.0	00	2,853	239.0	2,500	2,500	2,894	
348.0	00	3,600	258.0	3,219	5,719	3,685	
349.0	00	4,404	277.0	3,995	9,715	4,537	
350.0	00	5,264	296.0	4,828	14,542	5,450	
Device	Routing	Inve	ert Outle	et Devices			
#1	Discarded	346.0	0' 8.27	0 in/hr Exfiltratio	n over Surface a	rea	
				ductivity to Ground			
#2	Primary	349.0	Head	d (feet) 0.20 0.40	0.60 0.80 1.00	ted Rectangular Weir 1.20 1.40 1.60 63 2.64 2.64 2.63	

Discarded OutFlow Max=0.70 cfs @ 12.53 hrs HW=346.99' (Free Discharge) 1=Exfiltration (Controls 0.70 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=346.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 92

Summary for Pond 6P: INFIL. B

Inflow Area = 1.810 ac, 37.52% Impervious, Inflow Depth = 2.61" for 25-year event Inflow = 5.32 cfs @ 12.10 hrs, Volume= 0.394 af Outflow = 1.56 cfs @ 12.47 hrs, Volume= 0.394 af, Atten= 71%, Lag= 22.5 min Discarded = 0.95 cfs @ 12.47 hrs, Volume= 0.295 af Primary = 0.95 cfs @ 12.47 hrs, Volume= 0.099 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 359.29' @ 12.47 hrs Surf.Area= 0.039 ac Storage= 0.108 af Flood Elev= 364.70' Surf.Area= 0.039 ac Storage= 0.152 af

Plug-Flow detention time= 36.6 min calculated for 0.394 af (100% of inflow) Center-of-Mass det. time= 36.6 min (876.5 - 839.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	355.00'	0.069 af	39.50'W x 43.37'L x 6.50'H Field A
			0.256 af Overall - 0.082 af Embedded = 0.173 af x 40.0% Voids
#2A	356.50'	0.082 af	Cultec R-902HD x 55 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			55 Chambers in 5 Rows
			Cap Storage= +2.8 cf x 2 x 5 rows = 27.6 cf
	•	0.450.5	T () A ()) O(

0.152 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	355.00'	8.270 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 350.00'
#2	Device 4	360.50'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Device 4	357.00'	5.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Primary	356.00'	12.0" Round Culvert
			L= 139.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 356.00' / 355.00' S= 0.0072 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf

Discarded OutFlow Max=0.61 cfs @ 12.47 hrs HW=359.28' (Free Discharge) **1=Exfiltration** (Controls 0.61 cfs)

Primary OutFlow Max=0.95 cfs @ 12.47 hrs HW=359.28' (Free Discharge)

4=Culvert (Passes 0.95 cfs of 4.56 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-3=Orifice/Grate (Orifice Controls 0.95 cfs @ 6.93 fps)

Page 93

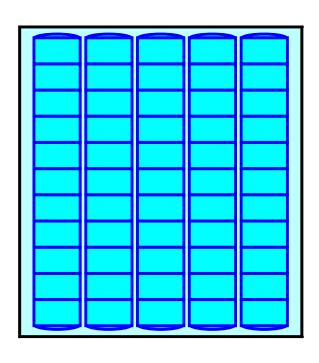
Pond 6P: INFIL. B - Chamber Wizard Field A

Chamber Model = Cultec R-902HD (Cultec Recharger®902HD)

Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap Cap Storage= +2.8 cf x 2 x 5 rows = 27.6 cf

78.0" Wide + 9.0" Spacing = 87.0" C-C Row Spacing

11 Chambers/Row x 3.67' Long +0.52' Cap Length x 2 = 41.37' Row Length +12.0" End Stone x 2 = 43.37' Base Length


5 Rows x 78.0" Wide + 9.0" Spacing x 4 + 24.0" Side Stone x 2 = 39.50' Base Width 18.0" Stone Base + 48.0" Chamber Height + 12.0" Stone Cover = 6.50' Field Height

55 Chambers x 64.7 cf + 2.8 cf Cap Volume x 2 x 5 Rows = 3,588.0 cf Chamber Storage

11,134.4 cf Field - 3,588.0 cf Chambers = 7,546.4 cf Stone x 40.0% Voids = 3,018.5 cf Stone Storage

Chamber Storage + Stone Storage = 6,606.6 cf = 0.152 af Overall Storage Efficiency = 59.3% Overall System Size = 43.37' x 39.50' x 6.50'

55 Chambers 412.4 cy Field 279.5 cy Stone

5293-POST

Prepared by Dillis & Roy Civil Design Group, Inc. HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Printed 2/28/2022

Page 94

Summary for Pond 8P: CB-2

Inflow Area = 0.038 ac, 64.49% Impervious, Inflow Depth = 3.52" for 25-year event

Inflow = 0.15 cfs @ 12.09 hrs, Volume= 0.011 af

Outflow = 0.15 cfs @ 12.09 hrs, Volume= 0.011 af, Atten= 0%, Lag= 0.0 min

Primary = 0.15 cfs @ 12.09 hrs, Volume= 0.011 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 344.25' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	344.04'	12.0" Round Culvert L= 27.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 344.04' / 343.77' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.15 cfs @ 12.09 hrs HW=344.25' (Free Discharge) 1=Culvert (Inlet Controls 0.15 cfs @ 1.24 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 95</u>

Summary for Pond 10P: CB-1

Inflow Area = 0.176 ac, 21.20% Impervious, Inflow Depth = 1.32" for 25-year event

Inflow = 0.22 cfs @ 12.11 hrs, Volume= 0.019 af

Outflow = 0.22 cfs @ 12.11 hrs, Volume= 0.019 af, Atten= 0%, Lag= 0.0 min

Primary = 0.22 cfs @ 12.11 hrs, Volume= 0.019 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 344.30' @ 12.11 hrs

 Device
 Routing
 Invert
 Outlet Devices

 #1
 Primary
 344.04'
 12.0" Round Culvert

 L= 8.0'
 CPP, projecting, no headwall, Ke= 0.900

 Inlet / Outlet Invert= 344.04' / 343.77'
 S= 0.0338 '/'
 Cc= 0.900

 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.22 cfs @ 12.11 hrs HW=344.30' (Free Discharge) 1=Culvert (Inlet Controls 0.22 cfs @ 1.37 fps)

Printed 2/28/2022

<u>Page 96</u>

Summary for Pond 12P: INFIL. A

Inflow Area =	0.214 ac, 28.89% Impervious, Inflow D	Depth = 1.71" for 25-year event
Inflow =	0.38 cfs @ 12.10 hrs, Volume=	0.030 af
Outflow =	0.10 cfs @ 12.53 hrs, Volume=	0.030 af, Atten= 73%, Lag= 25.4 min
Discarded =	0.10 cfs @ 12.53 hrs, Volume=	0.030 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 344.38' @ 12.53 hrs Surf.Area= 0.009 ac Storage= 0.006 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 15.9 min (878.3 - 862.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	343.27'	0.007 af	11.50'W x 34.65'L x 2.71'H Field A
			0.025 af Overall - 0.008 af Embedded = 0.017 af x 40.0% Voids
#2A	343.77'	0.008 af	Cultec R-180 x 15 Inside #1
			Effective Size= 33.6"W x 20.0"H => 3.44 sf x 6.33'L = 21.8 cf
			Overall Size= 36.0"W x 20.5"H x 7.33'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 3.44 sf x 3 rows
		0.015 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	343.27'	8.270 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 340.00'
#2	Secondary	346.00'	12.0" Round Culvert
			L= 20.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 346.00' / 345.00' S= 0.0500 '/' Cc= 0.900
			n= 0.130, Flow Area= 0.79 sf

Discarded OutFlow Max=0.10 cfs @ 12.53 hrs HW=344.38' (Free Discharge) 1=Exfiltration (Controls 0.10 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=343.27' (Free Discharge) 2=Culvert (Controls 0.00 cfs)

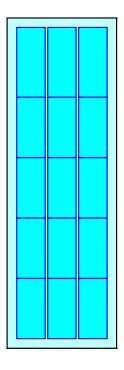
Pond 12P: INFIL. A - Chamber Wizard Field A

Chamber Model = Cultec R-180 (Cultec Recharger®180HD)

Effective Size= 33.6"W x 20.0"H => 3.44 sf x 6.33'L = 21.8 cf Overall Size= 36.0"W x 20.5"H x 7.33'L with 1.00' Overlap Row Length Adjustment= +1.00' x 3.44 sf x 3 rows

36.0" Wide + 3.0" Spacing = 39.0" C-C Row Spacing

5 Chambers/Row x 6.33' Long +1.00' Row Adjustment = 32.65' Row Length +12.0" End Stone x 2 = 34.65' Base Length


3 Rows x 36.0" Wide + 3.0" Spacing x 2 + 12.0" Side Stone x 2 = 11.50' Base Width 6.0" Stone Base + 20.5" Chamber Height + 6.0" Stone Cover = 2.71' Field Height

15 Chambers x 21.8 cf +1.00' Row Adjustment x 3.44 sf x 3 Rows = 336.9 cf Chamber Storage

1,079.2 cf Field - 336.9 cf Chambers = 742.3 cf Stone x 40.0% Voids = 296.9 cf Stone Storage

Chamber Storage + Stone Storage = 633.8 cf = 0.015 af Overall Storage Efficiency = 58.7% Overall System Size = 34.65' x 11.50' x 2.71'

15 Chambers 40.0 cy Field 27.5 cy Stone

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 98

Summary for Pond 15P: CB-3

Inflow Area = 0.542 ac, 10.20% Impervious, Inflow Depth = 1.55" for 25-year event

Inflow = 0.86 cfs @ 12.10 hrs, Volume= 0.070 af

Outflow = 0.86 cfs @ 12.10 hrs, Volume= 0.070 af, Atten= 0%, Lag= 0.0 min

Primary = 0.86 cfs @ 12.10 hrs, Volume= 0.070 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 348.63' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	348.09'	12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 348.09' / 347.79' S= 0.0200 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.85 cfs @ 12.10 hrs HW=348.63' (Free Discharge) 1=Culvert (Inlet Controls 0.85 cfs @ 1.97 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 99

Summary for Pond 16P: CB-4

Inflow Area = 0.126 ac, 51.69% Impervious, Inflow Depth = 2.75" for 25-year event

Inflow = 0.39 cfs @ 12.10 hrs, Volume= 0.029 af

Outflow = 0.39 cfs @ 12.10 hrs, Volume= 0.029 af, Atten= 0%, Lag= 0.0 min

Primary = 0.39 cfs @ 12.10 hrs, Volume= 0.029 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 348.44' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	348.09'	12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 348.09' / 347.79' S= 0.0200 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.39 cfs @ 12.10 hrs HW=348.44' (Free Discharge) 1=Culvert (Inlet Controls 0.39 cfs @ 1.59 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 100</u>

Summary for Pond 17P: DP4

Inflow Area = 0.998 ac, 30.41% Impervious, Inflow Depth = 2.56" for 25-year event

Inflow = 2.80 cfs @ 12.10 hrs, Volume= 0.213 af

Outflow = 2.80 cfs @ 12.10 hrs, Volume= 0.213 af, Atten= 0%, Lag= 0.0 min

Primary = 2.80 cfs @ 12.10 hrs, Volume= 0.213 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 348.68' @ 12.10 hrs

Primary OutFlow Max=2.77 cfs @ 12.10 hrs HW=348.68' (Free Discharge) 1=Culvert (Inlet Controls 2.77 cfs @ 2.67 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 101

Summary for Pond 18P: CB-6

Inflow Area = 0.075 ac, 69.15% Impervious, Inflow Depth = 3.83" for 25-year event

Inflow = 0.33 cfs @ 12.09 hrs, Volume= 0.024 af

Outflow = 0.33 cfs @ 12.09 hrs, Volume= 0.024 af, Atten= 0%, Lag= 0.0 min

Primary = 0.33 cfs @ 12.09 hrs, Volume= 0.024 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 357.21' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	356.89'	12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 356.89' / 356.59' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.32 cfs @ 12.09 hrs HW=357.21' (Free Discharge) 1=Culvert (Inlet Controls 0.32 cfs @ 1.51 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 102

Summary for Pond 19P: CB-5

Inflow Area = 0.255 ac, 51.42% Impervious, Inflow Depth = 4.24" for 25-year event

Inflow = 1.22 cfs @ 12.09 hrs, Volume= 0.090 af

Outflow = 1.22 cfs @ 12.09 hrs, Volume= 0.090 af, Atten= 0%, Lag= 0.0 min

Primary = 1.22 cfs @ 12.09 hrs, Volume= 0.090 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 357.56' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	356.89'	12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 356.89' / 356.59' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.19 cfs @ 12.09 hrs HW=357.55' (Free Discharge) 1=Culvert (Inlet Controls 1.19 cfs @ 2.18 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 103

Summary for Pond 20P: DP7

Inflow Area = 0.330 ac, 55.47% Impervious, Inflow Depth = 4.15" for 25-year event

Inflow = 1.55 cfs @ 12.09 hrs, Volume= 0.114 af

Outflow = 1.55 cfs @ 12.09 hrs, Volume= 0.114 af, Atten= 0%, Lag= 0.0 min

Primary = 1.55 cfs @ 12.09 hrs, Volume= 0.114 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 357.27' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	356.49'	12.0" Round Culvert
			L= 159.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 356.49' / 347.79' S= 0.0547 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.52 cfs @ 12.09 hrs HW=357.25' (Free Discharge) 1=Culvert (Inlet Controls 1.52 cfs @ 2.35 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 104</u>

Summary for Pond 27P: CB-10

Inflow Area = 0.681 ac, 24.93% Impervious, Inflow Depth = 1.71" for 25-year event

Inflow = 1.23 cfs @ 12.10 hrs, Volume= 0.097 af

Outflow = 1.23 cfs @ 12.10 hrs, Volume= 0.097 af, Atten= 0%, Lag= 0.0 min

Primary = 1.23 cfs @ 12.10 hrs, Volume= 0.097 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 362.63' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
-	Primary	361.96'	12.0" Round Culvert L= 89.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 361.96' / 359.29' S= 0.0300 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.22 cfs @ 12.10 hrs HW=362.63' (Free Discharge) 1=Culvert (Inlet Controls 1.22 cfs @ 2.19 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 105</u>

Summary for Pond 28P: CB-9

Inflow Area = 0.191 ac, 7.80% Impervious, Inflow Depth = 2.94" for 25-year event

Inflow = 0.64 cfs @ 12.09 hrs, Volume= 0.047 af

Outflow = 0.64 cfs @ 12.09 hrs, Volume= 0.047 af, Atten= 0%, Lag= 0.0 min

Primary = 0.64 cfs @ 12.09 hrs, Volume= 0.047 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 360.80' @ 12.09 hrs

| Device Routing | Invert Outlet Devices | 360.34' | 12.0" Round Culvert | L= 31.0' CPP, projecting, no headwall, Ke= 0.900 | Inlet / Outlet Invert= 360.34' / 360.03' S= 0.0100 '/' Cc= 0.900 | n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.64 cfs @ 12.09 hrs HW=360.80' (Free Discharge) 1=Culvert (Inlet Controls 0.64 cfs @ 1.82 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 106</u>

Summary for Pond 29P: DP13

Inflow Area = 1.130 ac, 45.10% Impervious, Inflow Depth = 3.16" for 25-year event

Inflow = 4.09 cfs @ 12.09 hrs, Volume= 0.297 af

Outflow = 4.09 cfs @ 12.09 hrs, Volume= 0.297 af, Atten= 0%, Lag= 0.0 min

Primary = 4.09 cfs @ 12.09 hrs, Volume= 0.297 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 361.06' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	359.93'	18.0" Round Culvert L= 64.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 359.93' / 359.29' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf

Primary OutFlow Max=4.03 cfs @ 12.09 hrs HW=361.05' (Free Discharge) 1=Culvert (Inlet Controls 4.03 cfs @ 2.84 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 107</u>

Summary for Pond 30P: CB-8

Inflow Area = 0.540 ac, 56.59% Impervious, Inflow Depth = 3.03" for 25-year event

Inflow = 1.88 cfs @ 12.09 hrs, Volume= 0.137 af

Outflow = 1.88 cfs @ 12.09 hrs, Volume= 0.137 af, Atten= 0%, Lag= 0.0 min

Primary = 1.88 cfs @ 12.09 hrs, Volume= 0.137 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 361.22' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	360.33'	12.0" Round Culvert L= 30.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 360.33' / 360.03' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.85 cfs @ 12.09 hrs HW=361.21' (Free Discharge) 1=Culvert (Inlet Controls 1.85 cfs @ 2.53 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 108</u>

Summary for Pond 31P: CB-8

Inflow Area = 0.398 ac, 47.42% Impervious, Inflow Depth = 3.42" for 25-year event

Inflow = 1.57 cfs @ 12.09 hrs, Volume= 0.114 af

Outflow = 1.57 cfs @ 12.09 hrs, Volume= 0.114 af, Atten= 0%, Lag= 0.0 min

Primary = 1.57 cfs @ 12.09 hrs, Volume= 0.114 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 361.11' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	360.33'	12.0" Round Culvert L= 30.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 360.33' / 360.03' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.54 cfs @ 12.09 hrs HW=361.10' (Free Discharge) 1=Culvert (Inlet Controls 1.54 cfs @ 2.36 fps)

5293-POST

Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 109

Summary for Link 1L: DP-A

Inflow Area = 1.476 ac, 24.16% Impervious, Inflow Depth = 0.06" for 25-year event

Inflow = 0.05 cfs @ 12.17 hrs, Volume= 0.008 af

Primary = 0.05 cfs @ 12.17 hrs, Volume= 0.008 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

5293-POST

Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 110

Summary for Link 2L: DP-B

Inflow Area = 2.633 ac, 28.89% Impervious, Inflow Depth = 0.65" for 25-year event

Inflow = 1.16 cfs @ 12.38 hrs, Volume= 0.142 af

Primary = 1.16 cfs @ 12.38 hrs, Volume= 0.142 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Pond 6P: INFIL. B

Printed 2/28/2022

Page 111

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

5 ,	3 ,
Subcatchment2S: POST-B1	Runoff Area=35,830 sf 9.91% Impervious Runoff Depth=1.31" Tc=6.0 min CN=42 Runoff=0.91 cfs 0.089 af
Subcatchment5S: POST A1	Runoff Area=6,376 sf 6.09% Impervious Runoff Depth=1.31" Tc=6.0 min CN=42 Runoff=0.16 cfs 0.016 af
Subcatchment6S: POST A2	Runoff Area=14,477 sf 13.39% Impervious Runoff Depth=1.31" Tc=6.0 min UI Adjusted CN=42 Runoff=0.37 cfs 0.036 af
Subcatchment7S: POST A3	Runoff Area=1,656 sf 64.49% Impervious Runoff Depth=5.01" Tc=6.0 min CN=77 Runoff=0.22 cfs 0.016 af
Subcatchment9S: POST A4	Runoff Area=7,665 sf 21.20% Impervious Runoff Depth=2.28" Tc=6.0 min CN=52 Runoff=0.43 cfs 0.033 af
Subcatchment13S: POST A5	Runoff Area=5,473 sf 51.69% Impervious Runoff Depth=4.10" Tc=6.0 min CN=69 Runoff=0.59 cfs 0.043 af
Subcatchment14S: POST A6	Runoff Area=23,604 sf 10.20% Impervious Runoff Depth=2.59" Tc=6.0 min CN=55 Runoff=1.54 cfs 0.117 af
Subcatchment21S: POST A8	Runoff Area=11,091 sf 51.42% Impervious Runoff Depth=5.82" Tc=6.0 min CN=84 Runoff=1.65 cfs 0.123 af
Subcatchment22S: POST A7	Runoff Area=3,287 sf 69.15% Impervious Runoff Depth=5.35" Tc=6.0 min CN=80 Runoff=0.46 cfs 0.034 af
Subcatchment23S: POST-B2	Runoff Area=23,538 sf 56.59% Impervious Runoff Depth=4.44" Tc=6.0 min CN=72 Runoff=2.76 cfs 0.200 af
Subcatchment24S: POST-B4	Runoff Area=8,332 sf 7.80% Impervious Runoff Depth=4.33" Tc=6.0 min CN=71 Runoff=0.95 cfs 0.069 af
Subcatchment25S: POST-B3	Runoff Area=17,344 sf 47.42% Impervious Runoff Depth=4.89" Tc=6.0 min CN=76 Runoff=2.23 cfs 0.162 af
Subcatchment26S: POST-B5	Runoff Area=29,650 sf 24.93% Impervious Runoff Depth=2.80" Tc=6.0 min CN=57 Runoff=2.12 cfs 0.159 af
Pond 3P: DETENTION BASIN Discarded=0.91 cfs	Peak Elev=347.65' Storage=4,494 cf Inflow=4.59 cfs 0.353 af 0.353 af Primary=0.00 cfs 0.000 af Outflow=0.91 cfs 0.353 af

Pond 8P: CB-2 Peak Elev=344.30' Inflow=0.22 cfs 0.016 af 12.0" Round Culvert n=0.012 L=27.0' S=0.0100 '/' Outflow=0.22 cfs 0.016 af

Peak Elev=360.85' Storage=0.141 af Inflow=8.05 cfs 0.590 af

Discarded=0.71 cfs 0.377 af Primary=3.95 cfs 0.213 af Outflow=4.66 cfs 0.590 af

Primary=4.60 cfs 0.303 af

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 112

·	•
Pond 10P: CB-1	Peak Elev=344.41' Inflow=0.43 cfs 0.033 af 12.0" Round Culvert n=0.012 L=8.0' S=0.0338 '/' Outflow=0.43 cfs 0.033 af
Pond 12P: INFIL. A	Peak Elev=345.70' Storage=0.014 af Inflow=0.65 cfs 0.049 af Discarded=0.13 cfs 0.049 af Secondary=0.00 cfs 0.000 af Outflow=0.13 cfs 0.049 af
Pond 15P: CB-3	Peak Elev=348.86' Inflow=1.54 cfs 0.117 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200'/ Outflow=1.54 cfs 0.117 af
Pond 16P: CB-4	Peak Elev=348.53' Inflow=0.59 cfs 0.043 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200'/ Outflow=0.59 cfs 0.043 af
Pond 17P: DP4	Peak Elev=349.14' Inflow=4.24 cfs 0.317 af 15.0" Round Culvert n=0.012 L=43.0' S=0.0100 '/' Outflow=4.24 cfs 0.317 af
Pond 18P: CB-6	Peak Elev=357.27' Inflow=0.46 cfs 0.034 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=0.46 cfs 0.034 af
Pond 19P: CB-5	Peak Elev=357.70' Inflow=1.65 cfs 0.123 af 12.0" Round Culvert n=0.012 L=15.0' S=0.0200 '/' Outflow=1.65 cfs 0.123 af
Pond 20P: DP7	Peak Elev=357.48' Inflow=2.11 cfs 0.157 af 12.0" Round Culvert n=0.012 L=159.0' S=0.0547 '/' Outflow=2.11 cfs 0.157 af
Pond 27P: CB-10	Peak Elev=362.97' Inflow=2.12 cfs 0.159 af 12.0" Round Culvert n=0.012 L=89.0' S=0.0300 '/' Outflow=2.12 cfs 0.159 af
Pond 28P: CB-9	Peak Elev=360.91' Inflow=0.95 cfs 0.069 af 12.0" Round Culvert n=0.012 L=31.0' S=0.0100'/' Outflow=0.95 cfs 0.069 af
Pond 29P: DP13	Peak Elev=361.46' Inflow=5.93 cfs 0.431 af 18.0" Round Culvert n=0.012 L=64.0' S=0.0100'/ Outflow=5.93 cfs 0.431 af
Pond 30P: CB-8	Peak Elev=361.68' Inflow=2.76 cfs 0.200 af 12.0" Round Culvert n=0.012 L=30.0' S=0.0100'/ Outflow=2.76 cfs 0.200 af
Pond 31P: CB-8	Peak Elev=361.38' Inflow=2.23 cfs 0.162 af 12.0" Round Culvert n=0.012 L=30.0' S=0.0100'/ Outflow=2.23 cfs 0.162 af
Link 1L: DP-A	Inflow=0.16 cfs 0.016 af Primary=0.16 cfs 0.016 af
Link 2L: DP-B	Inflow=4.60 cfs 0.303 af

Total Runoff Area = 4.323 ac Runoff Volume = 1.098 af Average Runoff Depth = 3.05" 72.72% Pervious = 3.144 ac 27.28% Impervious = 1.179 ac

Printed 2/28/2022

Page 113

Summary for Subcatchment 2S: POST-B1

Runoff = 0.91 cfs @ 12.12 hrs, Volume= 0.089 af, Depth= 1.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

Area (sf)	CN	Description				
3,550	98	Roofs, HSG	A			
22,530	39	>75% Grass	s cover, Go	Good, HSG A		
9,750	30	Woods, God	od, HSG A	A	_	
35,830	42	Weighted A	verage			
32,280		90.09% Pervious Area				
3,550		9.91% Impervious Area				
Tc Length		,	Capacity	•		
(min) (feet)	(ft/	ft) (ft/sec)	(cfs)		_	
6.0				Direct Entry		

Printed 2/28/2022

Page 114

Summary for Subcatchment 5S: POST A1

Runoff = 0.16 cfs @ 12.12 hrs, Volume= 0.016 af, Depth= 1.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

	Aı	rea (sf)	CN I	Description				
		5,531	39	39 >75% Grass cover, Good, HSG A				
		457	30	Noods, Go	od, HSG A	1		
		388	98 I	Paved park	ing, HSG A	4		
-		6,376	42 \	Neighted A	verage			
		5,988	93.91% Pervious Area					
		388	6.09% Impervious Area			ea		
	Tc	Length	Slope	,	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	6.0					Direct Entry		

Printed 2/28/2022

Page 115

Summary for Subcatchment 6S: POST A2

Runoff = 0.37 cfs @ 12.12 hrs, Volume= 0.036 af, Depth= 1.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

_	Aı	rea (sf)	CN	Adj	Description					
-		11,475	39		>75% Gra	ass cov	ver, Good, HSG A			
		1,064	30		Woods, Good, HSG A					
		1,938	98		Unconnected roofs, HSG A					
-		14,477	46	42	Weighted Average, UI Adjusted					
		12,539			86.61% Pervious Area					
		1,938			13.39% Impervious Area					
		1,938			100.00% Unconnected					
	Tc	Length	Slope	e Velo	ocity Cap	acity	Description			
_	(min)	(feet)	(ft/ft)) (ft/:	sec)	(cfs)				
	6.0						Direct Entry			

Printed 2/28/2022

Page 116

Summary for Subcatchment 7S: POST A3

Runoff = 0.22 cfs @ 12.09 hrs, Volume= 0.016 af, Depth= 5.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

Aı	rea (sf)	CN	Description							
	588	39	>75% Grass cover, Good, HSG A							
	1,068	98	Paved parking, HSG A							
	1,656	77	Weighted Average							
	588	;	35.51% Pervious Area							
	1,068	(64.49% Impervious Area							
_										
Tc	Length	Slope	,	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Direct Entry,					

Printed 2/28/2022

Page 117

Summary for Subcatchment 9S: POST A4

Runoff = 0.43 cfs @ 12.10 hrs, Volume= 0.033 af, Depth= 2.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

A	rea (sf)	CN	Description							
	6,040	39	>75% Grass cover, Good, HSG A							
	1,625	98	Paved parking, HSG A							
	7,665	52	Weighted Average							
	6,040		78.80% Pervious Area							
	1,625		21.20% Impervious Area							
_										
Tc	Length	Slope	,	Capacity	Description					
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
6.0					Direct Entry					

Printed 2/28/2022

Page 118

Summary for Subcatchment 13S: POST A5

Runoff = 0.59 cfs @ 12.09 hrs, Volume= 0.043 af, Depth= 4.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

	Area (sf)	CN	Description							
	2,644	39	>75% Grass cover, Good, HSG A							
	2,168	98	Paved parking, HSG A							
	661	98	Unconnected roofs, HSG A							
	5,473	69	Weighted Average							
	2,644		48.31% Pervious Area							
	2,829		51.69% Impervious Area							
	661		23.37% Unconnected							
Tc	Length	Slop	e Velocity Capacity Description							
(min)	(feet)	(ft/ft	t) (ft/sec) (cfs)							
6.0			Direct Entry							

Printed 2/28/2022

Page 119

Summary for Subcatchment 14S: POST A6

Runoff = 1.54 cfs @ 12.10 hrs, Volume= 0.117 af, Depth= 2.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

	Area (sf)	CN	Description					
	2,408	98	Paved parking, HSG A					
	9,904	39	>75% Grass cover, Good, HSG A					
	920	80	>75% Grass cover, Good, HSG D					
	4,110	30	Woods, Good, HSG A					
	6,262	77	Woods, Good, HSG D					
	23,604	55	5 Weighted Average					
	21,196		89.80% Pervious Area					
	2,408 10.20% Impervious Area							
Tc	Length	Slop	pe Velocity Capacity Description					
(min)	(feet)	(ft/f	ft) (ft/sec) (cfs)					
6.0			Direct Entry					

5.0

Direct Entry,

Printed 2/28/2022

Page 120

Summary for Subcatchment 21S: POST A8

Runoff = 1.65 cfs @ 12.09 hrs, Volume= 0.123 af, Depth= 5.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

	Area (sf)	CN	Description								
	1,428	39	>75% Grass	>75% Grass cover, Good, HSG A							
	3,960	80	>75% Grass	s cover, Go	ood, HSG D						
	3,753	98	Paved park	ing, HSG A	١						
	656	98	Unconnecte	ed roofs, H	SG A						
	1,294	98	Unconnecte	Unconnected roofs, HSG D							
	11,091	84	Weighted A	Weighted Average							
	5,388		48.58% Per	48.58% Pervious Area							
	5,703		51.42% Imp	51.42% Impervious Area							
	1,950		34.19% Unconnected								
	Tc Length		•	Capacity	Description						
(1	min) (feet) (ft/	ft) (ft/sec)	(cfs)							
	6.0				Direct Entry						

Printed 2/28/2022

Page 121

Summary for Subcatchment 22S: POST A7

Runoff = 0.46 cfs @ 12.09 hrs, Volume= 0.034 af, Depth= 5.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

Α	rea (sf)	CN	Description							
	1,014	39	>75% Grass cover, Good, HSG A							
	2,273	98	Paved parking, HSG A							
	3,287	80	Weighted Average							
	1,014		30.85% Pervious Area							
	2,273		69.15% Impervious Area							
_										
Tc	Length	Slope	,	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Discot Fates					

6.0

Direct Entry,

Printed 2/28/2022

Page 122

Summary for Subcatchment 23S: POST-B2

Runoff = 2.76 cfs @ 12.09 hrs, Volume= 0.200 af, Depth= 4.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

 Α	rea (sf)	CN	Description							
	9,971	39	>75% Gras	>75% Grass cover, Good, HSG A						
	247	30	Woods, Go	od, HSG A	4					
	6,536	98	Paved park	ing, HSG A	A					
	6,784	98	Roofs, HSG	Roofs, HSG A						
	23,538	72	Weighted Average							
	10,218		43.41% Pervious Area							
	13,320	56.59% Impervious Area								
Tc	Length	Slop	e Velocity	Capacity	Description					
(min)	(feet)	(ft/ft	t) (ft/sec)	(cfs)						
6.0					Direct Entry					

Printed 2/28/2022

Page 123

Summary for Subcatchment 24S: POST-B4

Runoff = 0.95 cfs @ 12.09 hrs, Volume= 0.069 af, Depth= 4.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

A	rea (sf)	CN	CN Description					
	1,793	39	>75% Gras	s cover, Go	ood, HSG A			
	4,921	80	>75% Gras	s cover, Go	ood, HSG D			
	138	30	Woods, Go	od, HSG A				
	830	77	Woods, Go	od, HSG D				
	650	98	Roofs, HSG A					
	8,332	71	Weighted Average					
	7,682		92.20% Pervious Area					
	650		7.80% Impervious Area					
Тс	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry			

6.0

Direct Entry,

Printed 2/28/2022

Page 124

Summary for Subcatchment 25S: POST-B3

Runoff = 2.23 cfs @ 12.09 hrs, Volume= 0.162 af, Depth= 4.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

	rea (sf)	CN	Description		
	5,059	39	>75% Gras	s cover, Go	ood, HSG A
	3,462	80	>75% Gras	s cover, Go	ood, HSG D
	177	30	Woods, Go	od, HSG A	L
	422	77	Woods, Go	od, HSG D	
	6,064	98	Paved park	ing, HSG A	A
	2,160	98	Roofs, HSC	6 A	
	17,344	76	Weighted A	verage	
	9,120		52.58% Per	vious Area	a
	8,224		47.42% Imp	pervious Ar	rea
Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description
6.0					Direct Entry,

Printed 2/28/2022

Page 125

Summary for Subcatchment 26S: POST-B5

Runoff = 2.12 cfs @ 12.10 hrs, Volume= 0.159 af, Depth= 2.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.71"

Area (sf)	CN	Description
15,074	39	>75% Grass cover, Good, HSG A
915	80	>75% Grass cover, Good, HSG D
3,920	30	Woods, Good, HSG A
2,348	77	Woods, Good, HSG D
2,439	98	Paved parking, HSG A
4,954	98	Roofs, HSG A
29,650	57	Weighted Average
22,257		75.07% Pervious Area
7,393		24.93% Impervious Area
Tc Length (min) (feet)	Slo _l (ft/	pe Velocity Capacity Description /ft) (ft/sec) (cfs)
6.0		Direct Entry,

Printed 2/28/2022

Page 126

Summary for Pond 3P: DETENTION BASIN

Inflow Area = 1.330 ac, 26.15% Impervious, Inflow Depth = 3.19" for 100-year event Inflow = 4.59 cfs @ 12.10 hrs, Volume= 0.353 af

Outflow = 0.91 cfs @ 12.57 hrs, Volume= 0.353 af, Atten= 80%, Lag= 28.2 min 0.91 cfs @ 12.57 hrs, Volume= 0.353 af

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 347.65' @ 12.57 hrs Surf.Area= 3,326 sf Storage= 4,494 cf

Plug-Flow detention time= 41.3 min calculated for 0.353 af (100% of inflow) Center-of-Mass det. time= 41.2 min (873.4 - 832.2)

Volume	Invert	Avail.S	Storage	Storage Descripti	on		
#1	346.00'	14	,542 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)	
Elevation	on Su	ırf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
346.0	00	2,163	220.0	0	0	2,163	
347.0	00	2,853	239.0	2,500	2,500	2,894	
348.0	00	3,600	258.0	3,219	5,719	3,685	
349.0	00	4,404	277.0	3,995	9,715	4,537	
350.0	00	5,264	296.0	4,828	14,542	5,450	
Device	Routing	Inve	rt Outle	et Devices			
#1	Discarded	346.0	0' 8.27	0 in/hr Exfiltration	n over Surface ar	ea	
			Cond	ductivity to Ground	water Elevation =	343.00'	
#2	Primary	349.0				ted Rectangular Weir	
				d (feet) 0.20 0.40			
			Coef	f. (English) 2.68 2	2.70 2.70 2.64 2.	63 2.64 2.64 2.63	

Discarded OutFlow Max=0.91 cfs @ 12.57 hrs HW=347.64' (Free Discharge) **1=Exfiltration** (Controls 0.91 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=346.00' (Free Discharge) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 127

Summary for Pond 6P: INFIL. B

Inflow Area = 1.810 ac, 37.52% Impervious, Inflow Depth = 3.91" for 100-year event Inflow = 8.05 cfs @ 12.09 hrs, Volume= 0.590 af Outflow = 4.66 cfs @ 12.24 hrs, Volume= 0.590 af, Atten= 42%, Lag= 8.8 min Discarded = 0.71 cfs @ 12.24 hrs, Volume= 0.377 af Primary = 3.95 cfs @ 12.24 hrs, Volume= 0.213 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 360.85' @ 12.24 hrs Surf.Area= 0.039 ac Storage= 0.141 af Flood Elev= 364.70' Surf.Area= 0.039 ac Storage= 0.152 af

Plug-Flow detention time= 36.5 min calculated for 0.590 af (100% of inflow) Center-of-Mass det. time= 36.5 min (865.4 - 828.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	355.00'	0.069 af	39.50'W x 43.37'L x 6.50'H Field A
			0.256 af Overall - 0.082 af Embedded = 0.173 af x 40.0% Voids
#2A	356.50'	0.082 af	Cultec R-902HD x 55 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			55 Chambers in 5 Rows
			Cap Storage= +2.8 cf x 2 x 5 rows = 27.6 cf
·		0.450 (T () A ())) O(

0.152 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	355.00'	8.270 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 350.00'
#2	Device 4	360.50'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Device 4	357.00'	5.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Primary	356.00'	12.0" Round Culvert
	-		L= 139.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 356.00' / 355.00' S= 0.0072 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf

Discarded OutFlow Max=0.71 cfs @ 12.24 hrs HW=360.84' (Free Discharge) 1=Exfiltration (Controls 0.71 cfs)

Primary OutFlow Max=3.84 cfs @ 12.24 hrs HW=360.84' (Free Discharge)

4=Culvert (Passes 3.84 cfs of 5.54 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Weir Controls 2.59 cfs @ 1.92 fps)

—3=Orifice/Grate (Orifice Controls 1.25 cfs @ 9.18 fps)

Printed 2/28/2022

Page 128

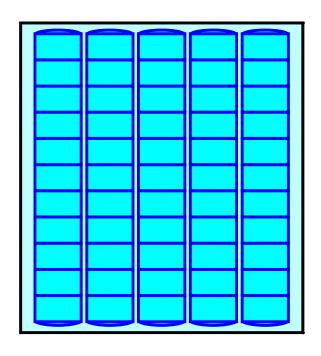
Pond 6P: INFIL. B - Chamber Wizard Field A

Chamber Model = Cultec R-902HD (Cultec Recharger® 902HD)

Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap Cap Storage= +2.8 cf x 2 x 5 rows = 27.6 cf

78.0" Wide + 9.0" Spacing = 87.0" C-C Row Spacing

11 Chambers/Row x 3.67' Long +0.52' Cap Length x 2 = 41.37' Row Length +12.0" End Stone x 2 = 43.37' Base Length


5 Rows x 78.0" Wide + 9.0" Spacing x 4 + 24.0" Side Stone x 2 = 39.50' Base Width 18.0" Stone Base + 48.0" Chamber Height + 12.0" Stone Cover = 6.50' Field Height

55 Chambers x 64.7 cf + 2.8 cf Cap Volume x 2 x 5 Rows = 3,588.0 cf Chamber Storage

11,134.4 cf Field - 3,588.0 cf Chambers = 7,546.4 cf Stone x 40.0% Voids = 3,018.5 cf Stone Storage

Chamber Storage + Stone Storage = 6,606.6 cf = 0.152 af Overall Storage Efficiency = 59.3% Overall System Size = 43.37' x 39.50' x 6.50'

55 Chambers 412.4 cy Field 279.5 cy Stone

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 129

Summary for Pond 8P: CB-2

Inflow Area = 0.038 ac, 64.49% Impervious, Inflow Depth = 5.01" for 100-year event

Inflow = 0.22 cfs @ 12.09 hrs, Volume= 0.016 af

Outflow = 0.22 cfs @ 12.09 hrs, Volume= 0.016 af, Atten= 0%, Lag= 0.0 min

Primary = 0.22 cfs @ 12.09 hrs, Volume= 0.016 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 344.30' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	344.04'	12.0" Round Culvert L= 27.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 344.04' / 343.77' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.21 cfs @ 12.09 hrs HW=344.29' (Free Discharge) 1=Culvert (Inlet Controls 0.21 cfs @ 1.35 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 130</u>

Summary for Pond 10P: CB-1

Inflow Area = 0.176 ac, 21.20% Impervious, Inflow Depth = 2.28" for 100-year event

Inflow = 0.43 cfs @ 12.10 hrs, Volume= 0.033 af

Outflow = 0.43 cfs @ 12.10 hrs, Volume= 0.033 af, Atten= 0%, Lag= 0.0 min

Primary = 0.43 cfs @ 12.10 hrs, Volume= 0.033 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 344.41' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
	Primary	344.04'	12.0" Round Culvert L= 8.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 344.04' / 343.77' S= 0.0338 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.43 cfs @ 12.10 hrs HW=344.41' (Free Discharge) 1=Culvert (Inlet Controls 0.43 cfs @ 1.63 fps)

Printed 2/28/2022

Page 131

Summary for Pond 12P: INFIL. A

Inflow Area =	0.214 ac, 28.89% Impervious, Inflow D	epth = 2.76" for 100-year event
Inflow =	0.65 cfs @ 12.10 hrs, Volume=	0.049 af
Outflow =	0.13 cfs @ 12.57 hrs, Volume=	0.049 af, Atten= 79%, Lag= 28.3 min
Discarded =	0.13 cfs @ 12.57 hrs, Volume=	0.049 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 345.70' @ 12.57 hrs Surf.Area= 0.009 ac Storage= 0.014 af

Plug-Flow detention time= 35.1 min calculated for 0.049 af (100% of inflow) Center-of-Mass det. time= 35.0 min (884.6 - 849.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	343.27'	0.007 af	11.50'W x 34.65'L x 2.71'H Field A
			0.025 af Overall - 0.008 af Embedded = 0.017 af x 40.0% Voids
#2A	343.77'	0.008 af	Cultec R-180 x 15 Inside #1
			Effective Size= 33.6"W x 20.0"H => 3.44 sf x 6.33'L = 21.8 cf
			Overall Size= 36.0"W x 20.5"H x 7.33'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 3.44 sf x 3 rows
		0.015 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	343.27'	8.270 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 340.00'
#2	Secondary	346.00'	12.0" Round Culvert
			L= 20.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 346.00' / 345.00' S= 0.0500 '/' Cc= 0.900
			n= 0.130, Flow Area= 0.79 sf

Discarded OutFlow Max=0.13 cfs @ 12.57 hrs HW=345.70' (Free Discharge) **1=Exfiltration** (Controls 0.13 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=343.27' (Free Discharge) 2=Culvert (Controls 0.00 cfs)

Printed 2/28/2022

Page 132

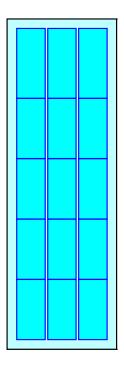
Pond 12P: INFIL. A - Chamber Wizard Field A

Chamber Model = Cultec R-180 (Cultec Recharger®180HD)

Effective Size= 33.6"W x 20.0"H => 3.44 sf x 6.33'L = 21.8 cf Overall Size= 36.0"W x 20.5"H x 7.33'L with 1.00' Overlap Row Length Adjustment= +1.00' x 3.44 sf x 3 rows

36.0" Wide + 3.0" Spacing = 39.0" C-C Row Spacing

5 Chambers/Row x 6.33' Long +1.00' Row Adjustment = 32.65' Row Length +12.0" End Stone x 2 = 34.65' Base Length


3 Rows x 36.0" Wide + 3.0" Spacing x 2 + 12.0" Side Stone x 2 = 11.50' Base Width 6.0" Stone Base + 20.5" Chamber Height + 6.0" Stone Cover = 2.71' Field Height

15 Chambers x 21.8 cf +1.00' Row Adjustment x 3.44 sf x 3 Rows = 336.9 cf Chamber Storage

1,079.2 cf Field - 336.9 cf Chambers = 742.3 cf Stone x 40.0% Voids = 296.9 cf Stone Storage

Chamber Storage + Stone Storage = 633.8 cf = 0.015 af Overall Storage Efficiency = 58.7% Overall System Size = 34.65' x 11.50' x 2.71'

15 Chambers 40.0 cy Field 27.5 cy Stone

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 133</u>

Summary for Pond 15P: CB-3

Inflow Area = 0.542 ac, 10.20% Impervious, Inflow Depth = 2.59" for 100-year event

Inflow = 1.54 cfs @ 12.10 hrs, Volume= 0.117 af

Outflow = 1.54 cfs @ 12.10 hrs, Volume= 0.117 af, Atten= 0%, Lag= 0.0 min

Primary = 1.54 cfs @ 12.10 hrs, Volume= 0.117 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 348.86' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	348.09'	12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 348.09' / 347.79' S= 0.0200 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.54 cfs @ 12.10 hrs HW=348.86' (Free Discharge) 1=Culvert (Inlet Controls 1.54 cfs @ 2.36 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 134</u>

Summary for Pond 16P: CB-4

Inflow Area = 0.126 ac, 51.69% Impervious, Inflow Depth = 4.10" for 100-year event

Inflow = 0.59 cfs @ 12.09 hrs, Volume= 0.043 af

Outflow = 0.59 cfs @ 12.09 hrs, Volume= 0.043 af, Atten= 0%, Lag= 0.0 min

Primary = 0.59 cfs @ 12.09 hrs, Volume= 0.043 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 348.53' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices			
#1	Primary	348.09'	12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900			
			Inlet / Outlet Invert= 348.09' / 347.79' S= 0.0200 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf			

Primary OutFlow Max=0.58 cfs @ 12.09 hrs HW=348.53' (Free Discharge) 1=Culvert (Inlet Controls 0.58 cfs @ 1.77 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 135</u>

Summary for Pond 17P: DP4

Inflow Area = 0.998 ac, 30.41% Impervious, Inflow Depth = 3.81" for 100-year event

Inflow = 4.24 cfs @ 12.09 hrs, Volume= 0.317 af

Outflow = 4.24 cfs @ 12.09 hrs, Volume= 0.317 af, Atten= 0%, Lag= 0.0 min

Primary = 4.24 cfs @ 12.09 hrs, Volume= 0.317 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 349.14' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	347.69'	15.0" Round Culvert L= 43.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 347.69' / 347.26' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=4.17 cfs @ 12.09 hrs HW=349.11' (Free Discharge) 1=Culvert (Inlet Controls 4.17 cfs @ 3.40 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 136</u>

Summary for Pond 18P: CB-6

Inflow Area = 0.075 ac, 69.15% Impervious, Inflow Depth = 5.35" for 100-year event

Inflow = 0.46 cfs @ 12.09 hrs, Volume= 0.034 af

Outflow = 0.46 cfs @ 12.09 hrs, Volume= 0.034 af, Atten= 0%, Lag= 0.0 min

Primary = 0.46 cfs @ 12.09 hrs, Volume= 0.034 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 357.27' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	356.89'	12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 356.89' / 356.59' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.45 cfs @ 12.09 hrs HW=357.27' (Free Discharge) 1=Culvert (Inlet Controls 0.45 cfs @ 1.65 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 137</u>

Summary for Pond 19P: CB-5

Inflow Area = 0.255 ac, 51.42% Impervious, Inflow Depth = 5.82" for 100-year event

Inflow = 1.65 cfs @ 12.09 hrs, Volume= 0.123 af

Outflow = 1.65 cfs @ 12.09 hrs, Volume= 0.123 af, Atten= 0%, Lag= 0.0 min

Primary = 1.65 cfs @ 12.09 hrs, Volume= 0.123 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 357.70' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	356.89'	12.0" Round Culvert L= 15.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 356.89' / 356.59' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.61 cfs @ 12.09 hrs HW=357.69' (Free Discharge) 1=Culvert (Inlet Controls 1.61 cfs @ 2.40 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 138</u>

Summary for Pond 20P: DP7

Inflow Area = 0.330 ac, 55.47% Impervious, Inflow Depth = 5.71" for 100-year event

Inflow = 2.11 cfs @ 12.09 hrs, Volume= 0.157 af

Outflow = 2.11 cfs @ 12.09 hrs, Volume= 0.157 af, Atten= 0%, Lag= 0.0 min

Primary = 2.11 cfs @ 12.09 hrs, Volume= 0.157 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 357.48' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 159.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 356.49' / 347.79' S= 0.0547 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=2.06 cfs @ 12.09 hrs HW=357.46' (Free Discharge) 1=Culvert (Inlet Controls 2.06 cfs @ 2.65 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 139</u>

Summary for Pond 27P: CB-10

Inflow Area = 0.681 ac, 24.93% Impervious, Inflow Depth = 2.80" for 100-year event

Inflow = 2.12 cfs @ 12.10 hrs, Volume= 0.159 af

Outflow = 2.12 cfs @ 12.10 hrs, Volume= 0.159 af, Atten= 0%, Lag= 0.0 min

Primary = 2.12 cfs @ 12.10 hrs, Volume= 0.159 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 362.97' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	361.96'	12.0" Round Culvert L= 89.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 361.96' / 359.29' S= 0.0300 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=2.11 cfs @ 12.10 hrs HW=362.96' (Free Discharge) 1=Culvert (Inlet Controls 2.11 cfs @ 2.69 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 140</u>

Summary for Pond 28P: CB-9

Inflow Area = 0.191 ac, 7.80% Impervious, Inflow Depth = 4.33" for 100-year event

Inflow = 0.95 cfs @ 12.09 hrs, Volume= 0.069 af

Outflow = 0.95 cfs @ 12.09 hrs, Volume= 0.069 af, Atten= 0%, Lag= 0.0 min

Primary = 0.95 cfs @ 12.09 hrs, Volume= 0.069 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 360.91' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	360.34'	12.0" Round Culvert L= 31.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 360.34' / 360.03' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=0.93 cfs @ 12.09 hrs HW=360.91' (Free Discharge) 1=Culvert (Inlet Controls 0.93 cfs @ 2.03 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 141</u>

Summary for Pond 29P: DP13

Inflow Area = 1.130 ac, 45.10% Impervious, Inflow Depth = 4.58" for 100-year event

Inflow = 5.93 cfs @ 12.09 hrs, Volume= 0.431 af

Outflow = 5.93 cfs @ 12.09 hrs, Volume= 0.431 af, Atten= 0%, Lag= 0.0 min

Primary = 5.93 cfs @ 12.09 hrs, Volume= 0.431 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 361.46' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	359.93'	18.0" Round Culvert L= 64.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 359.93' / 359.29' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf

Primary OutFlow Max=5.82 cfs @ 12.09 hrs HW=361.43' (Free Discharge) 1=Culvert (Inlet Controls 5.82 cfs @ 3.29 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 142

Summary for Pond 30P: CB-8

Inflow Area = 0.540 ac, 56.59% Impervious, Inflow Depth = 4.44" for 100-year event

Inflow = 2.76 cfs @ 12.09 hrs, Volume= 0.200 af

Outflow = 2.76 cfs @ 12.09 hrs, Volume= 0.200 af, Atten= 0%, Lag= 0.0 min

Primary = 2.76 cfs @ 12.09 hrs, Volume= 0.200 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 361.68' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	360.33'	12.0" Round Culvert L= 30.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 360.33' / 360.03' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=2.71 cfs @ 12.09 hrs HW=361.65' (Free Discharge) 1=Culvert (Inlet Controls 2.71 cfs @ 3.45 fps)

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

<u>Page 143</u>

Summary for Pond 31P: CB-8

Inflow Area = 0.398 ac, 47.42% Impervious, Inflow Depth = 4.89" for 100-year event

Inflow = 2.23 cfs @ 12.09 hrs, Volume= 0.162 af

Outflow = 2.23 cfs @ 12.09 hrs, Volume= 0.162 af, Atten= 0%, Lag= 0.0 min

Primary = 2.23 cfs @ 12.09 hrs, Volume= 0.162 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 361.38' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	360.33'	12.0" Round Culvert L= 30.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 360.33' / 360.03' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=2.18 cfs @ 12.09 hrs HW=361.36' (Free Discharge) 1=Culvert (Inlet Controls 2.18 cfs @ 2.77 fps)

5293-POST

Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 144

Summary for Link 1L: DP-A

Inflow Area = 1.476 ac, 24.16% Impervious, Inflow Depth = 0.13" for 100-year event

Inflow = 0.16 cfs @ 12.12 hrs, Volume= 0.016 af

Primary = 0.16 cfs @ 12.12 hrs, Volume= 0.016 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

5293-POST

Prepared by Dillis & Roy Civil Design Group, Inc.

Printed 2/28/2022

HydroCAD® 10.10-3a s/n 03590 © 2020 HydroCAD Software Solutions LLC

Page 145

Summary for Link 2L: DP-B

Inflow Area = 2.633 ac, 28.89% Impervious, Inflow Depth = 1.38" for 100-year event

Inflow = 4.60 cfs @ 12.24 hrs, Volume= 0.303 af

Primary = 4.60 cfs @ 12.24 hrs, Volume= 0.303 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

APPENDIX F

Recharge / WQV / TSS Calculations

Sub-surface Infiltration Area A

Stormwater Recharge Calculations

CALCULATIONS

Recharge Volume, Rv:

 $R_v = A_C x F$

Total	0.062	A 1 11 13	0.003
A	0.062	0.0	0.003
Δ. σαρ	0.062	0.6	` '
Hydrologic Soil Group	Impervious Area (Ac) ¹	Target Depth (F)	Recharge Volume (Rv) Ac-feet

See INFIL. A subcatchment

Total Recharge Volume Required = 0.003 Ac-ft Total Recharge Volume Required (Rv) = 135 C.ft Recharge Vol. Provided (from Infil. Area 1) = 653.0 C.ft

Recharge Vol. is the reported volume below the outlet invert

Required Sediment Forebay vol, Fv:

 $F_v = A_C(cu.ft)x0.1inch$ of impervious area

0.062 Ac ¹ Imp. area captured by Infil A, Ap = Required Sediment Forebay vol, Fv= 22 C.ft

Sediment Forebay Volume Provided = 112 C.ft (Chamber volume in isolator row)

Drawdown Calculations

CALCULATIONS

Proposed Infiltration Area Calculations:

$$Drawdown = \frac{R_V}{(Rawls\ Rate)(Bottom\ Area)}$$

Drawdown Calculations:

Soil Texture:

Bottom Surface Area (A): 398 SF 8.27 in/hr Rawls Rate: Total Recharge Volume Required = 135 C.ft 0.49 hr Drawdown:

Drawdown is less than 72 Hours as Required

REFERENCES

Table 2.3.2: Recharge Target Depth by Hydrologic Soil Group

NRCS Hydrologic	Approx. Soil	Target Depth
Soil Group	Texture	Factor (F)
Α	sand	0.6 inch
В	loam	0.35 inch
С	silty loam	0.25 inch
D	clay	0.1 inch

REFERENCES

Table 2.3.3: 1982 Rawls Rates

Table 2.6.6. Tool Tawle Tales		
	NRCS	
	Hydrologic	
Texture Class	Soil Group	Infiltration Rate
1 Sand	Α	8.27 in/hr
2 Loamy Sand	Α	2.41 in/hr
3 Sandy Loam	В	1.02 in/hr
4 Loam	В	0.52 in/hr
5 Silt Loam	С	0.27 in/hr
6 Sandy Clay Loam	С	0.17 in/hr
7 Clay Loam	D	0.09 in/hr
8 Silty Clay Loam	D	0.06 in/hr
9 Sandy Clay	D	0.05 in/hr
10 Silty Clay	D	0.04 in/hr
11 Clay	D	0.02 in/hr

⁼ Refer to Proposed Conditions HydroCAD modeling report

Sub-surface Infiltration Area A

Stormwater Recharge Calculations

CALCULATIONS

Recharge Volume, Rv:

 $R_v = A_C x F$

Hydrologic Soil Group	Impervious Area (Ac) ¹	Target Depth (F)	Recharge Volume (Rv) Ac-feet
Α	0.318	0.6	0.016
D	0.030	0.1	0.000
Total	0.348		0.016

See INFIL. A subcatchment

Total Recharge Volume Required = Total Recharge Volume Required (Rv) =

704 C.ft Recharge Vol. Provided (from Infil. Area 1) = 4,494.0 C.ft

Recharge Vol. is the reported volume below the outlet invert

Required Sediment Forebay vol, Fv:

 $F_v = A_C(cu.ft)x0.1inch$ of impervious area

0.348 Ac ¹ Imp. area captured by Infil Basin, Ap = Required Sediment Forebay vol, Fv= 126 C.ft

Sediment Forebay Volume Provided = 251 C.ft

Drawdown Calculations

0.016 Ac-ft

CALCULATIONS

Proposed Infiltration Area Calculations:

$$Drawdown = \frac{R_V}{(Rawls\ Rate)(Bottom\ Area)}$$

Drawdown Calculations:

Soil Texture:

Bottom Surface Area (A): 2,163 SF 8.27 in/hr Rawls Rate: Total Recharge Volume Required = 704 C.ft 0.47 hr Drawdown:

Drawdown is less than 72 Hours as Required

REFERENCES

Table 2.3.2: Recharge Target Depth by Hydrologic Soil Group

NRCS Hydrologic	Approx. Soil	Target Depth
Soil Group	Texture	Factor (F)
Α	sand	0.6 inch
В	loam	0.35 inch
С	silty loam	0.25 inch
D	clay	0.1 inch

REFERENCES

Table 2.3.3: 1982 Rawls Rates

	NRCS	
	Hydrologic	
Texture Class	Soil Group	Infiltration Rate
1 Sand	Α	8.27 in/hr
2 Loamy Sand	Α	2.41 in/hr
3 Sandy Loam	В	1.02 in/hr
4 Loam	В	0.52 in/hr
5 Silt Loam	С	0.27 in/hr
6 Sandy Clay Loam	С	0.17 in/hr
7 Clay Loam	D	0.09 in/hr
8 Silty Clay Loam	D	0.06 in/hr
9 Sandy Clay	D	0.05 in/hr
10 Silty Clay	D	0.04 in/hr
11 Clay	D	0.02 in/hr

⁼ Refer to Proposed Conditions HydroCAD modeling report

Sub-surface Infiltration Area B

Stormwater Recharge Calculations

CALCULATIONS

Recharge Volume, Rv:

 $R_v = A_C x F$

Hydrologic Soil	Impervious	Target Depth (F)	Recharge Volume
Group	Area (Ac) 1		(Rv) Ac-feet
A	0.630	0.6	0.031
D	0.050	0.1	0.000
Total	0.679		0.032

*See INFIL. B subcatchment

Total Recharge Volume Required = 0.032 Ac-ft 1,389 C.ft Total Recharge Volume Required (Rv) =

Recharge Vol. Provided (from Infil. Area 1) = 1,698.0 C.ft (Storage voume below oriface)

Recharge Vol. is the reported volume below the outlet invert

Required Sediment Forebay vol, Fv:

 $F_v = A_C(cu.ft)x0.1inch$ of impervious area

0.679 Ac ¹ Imp. area captured by ponds, Ap = Required Sediment Forebay vol, Fv= 247 C.ft

Sediment Forebay Volume Provided = 718 C.ft (Chamber volume in isolator row)

Drawdown Calculations

CALCULATIONS

Proposed Infiltration Area Calculations:

$$Drawdown = \frac{R_V}{(Rawls\ Rate)(Bottom\ Area)}$$

Drawdown Calculations:

Soil Texture:

Bottom Surface Area (A): 1,713 SF 8.27 in/hr Rawls Rate: Total Recharge Volume Required = 1,389 C.ft 1.18 hr Drawdown:

Drawdown is less than 72 Hours as Required

REFERENCES

Table 2.3.2: Recharge Target Depth by Hydrologic Soil Group

NRCS Hydrologic	Approx. Soil	Target Depth
Soil Group	Texture	Factor (F)
Α	sand	0.6 inch
В	loam	0.35 inch
С	silty loam	0.25 inch
D	clay	0.1 inch

REFERENCES

Table 2.3.3: 1982 Rawls Rates

Table 2.0	.o. 1502 Rawi	3 I lates
	NRCS	
	Hydrologic	
Texture Class	Soil Group	Infiltration Rate
1 Sand	Α	8.27 in/hr
2 Loamy Sand	Α	2.41 in/hr
3 Sandy Loam	В	1.02 in/hr
4 Loam	В	0.52 in/hr
5 Silt Loam	С	0.27 in/hr
6 Sandy Clay Loam	С	0.17 in/hr
7 Clay Loam	D	0.09 in/hr
8 Silty Clay Loam	D	0.06 in/hr
9 Sandy Clay	D	0.05 in/hr
10 Silty Clay	D	0.04 in/hr
11 Clay	D	0.02 in/hr

⁼ Refer to Proposed Conditions HydroCAD modeling report

Adjusted Recharge/WQV Calcs

Stormwater Recharge Calculations

Capture Area Adjustment, Rvadj:

$$R_v adj = \frac{A_t}{A_p} x R_v$$

Imp. area captured by ponds, Ap =	1.0875 Ac
Total impervious area on site, AT =	1.18 Ac
Recharge volume required, Rv =	2,565 C.ft
Capture Rate=	92% OK
Capture Area Adjustment Factor=	1.08
Adjusted Recharge Volume Required Rvadj =	2,779 C.ft
Total Recharge Volume Provided =	8,799.0 C.ft

NOTES:

Water Quality Calculations

CALCULATIONS

Water Quality Calculation:

 $V_{WQ} = D_{WQ}(ft)x A_T(ft^2)$

Water Quality Depth =	1	in
Water Quality Depth , Dwo =	0.08	ft.
Total impervious area on site, AT =		_
$A_T =$	51,309	ft ²
Required Water Quality Volume, Vwg =	4.276	C.ft.

REFERENCES

1 inch depth
Zone II discharges
IWPA discharges
Critical Area
Runoff from LUHPPL
Infiltration rate >2.4 inches/hour
1/2 inch depth
Discharge to other ares
8 inch
9 inch
10 inch

- 1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
- 2. Select BMP from Drop Down Menu
- 3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Location: Total TSS Removal

TSS Removal Calculation Worksheet

В	С	D	E	F
	TSS Removal	Starting TSS	Amount	Remaining
BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
Infiltration Basin	0.80	0.75	0.60	0.15
	0.00	0.15	0.00	0.15
	0.00	0.15	0.00	0.15
	0.00	0.15	0.00	0.15

Total TSS Removal = 85%

Project: Mallard Lane
Prepared By: RPV
Date: 1-Dec-21

*Equals remaining load from previous BMP (E) which enters the BMP

- 1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
- 2. Select BMP from Drop Down Menu
- 3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Location: Total TSS Removal

TSS Removal Calculation Worksheet

В	С	D	E	F
	TSS Removal	Starting TSS	Amount	Remaining
BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
Subsurface Infiltration Structure	0.80	0.75	0.60	0.15
	0.00	0.15	0.00	0.15
	0.00	0.15	0.00	0.15
	0.00	0.15	0.00	0.15

Total TSS Removal = 85%

Project: Mallard Lane
Prepared By: RPV
Date: 1-Dec-21

*Equals remaining load from previous BMP (E) which enters the BMP

- 1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
- 2. Select BMP from Drop Down Menu
- 3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Location: Pre-Treatment

TSS Removal Calculation Worksheet

В	С	D	E	F
	TSS Removal	Starting TSS	Amount	Remaining
BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
Sediment Forebay	0.25	0.75	0.19	0.56
	0.00	0.56	0.00	0.56
	0.00	0.56	0.00	0.56
	0.00	0.56	0.00	0.56

Total TSS Removal = 44%

Project: Mallard Lane
Prepared By: RPV
Date: 1-Dec-21

*Equals remaining load from previous BMP (E) which enters the BMP

APPENDIX G

Stormwater Operation & Maintenance Manual

STORMWATER OPERATION & MAINTENANCE MANUAL

Mallard Lane

BOLTON, MASSACHUSETTS

Prepared For: James Morin

307 CENTRAL STREET, APT. 331

BOLTON, MA

Prepared By: DILLIS & ROY CIVIL DESIGN GROUP, INC

1 Main Street, Suite 1 Lunenburg, MA 01462

February 28, 2022 December 1st, 2021 5293

TABLE OF CONTENTS:

1.0 Project Narrative

- 1.1 Overview of Drainage System
- 1.2 Routine Operation & Maintenance Tasks
- 1.3 O&M Schedule

2.0 Appendices

Appendix A – Cultec Operation & Maintenance Manual

Appendix B – Stormwater Management System Owners/Operators

1.0 Project Narrative

1.1 Proposed Stormwater Management System

Runoff from the proposed development will be conveyed and treated through a combination of Best Management Practices (BMP's). The following is a brief discussion of each conveyance and treatment BMP proposed.

Deep Sump Hooded Catch Basins

Deep sump hooded catch basins are proposed to convey the runoff from the proposed roadway to the subsurface infiltration system. These catch basins will discharge to manholes and conventional storm drains.

Infiltration Basin

An infiltration basin is proposed at the of the site. The basin which will be equipped with a sediment forebay, will collect the runoff from the roofs and pavement after pretreatment in the deep sump hooded catch basins. The infiltration basin will recharge the runoff from the 100-year storm which an emergency overflow weir for larger storm events.

Subsurface Infiltration System

Subsurface infiltration systems are included at the entrance of the site and under the cul-de-sac. Cultec prefabricated chambers, models R-180HD and R-902HD, will be installed to collect the runoff from the roofs and pavement after pretreatment in the deep sump hooded catch basins. The infiltration systems will provide groundwater recharge as well.

1.2 Operation & Maintenance Tasks

The following activities should be performed routinely to allow for proper functioning of the stormwater system. The following are guidelines referring to each major component of the stormwater management system.

1.2.1 Street Sweeping

Street sweeping should be preformed at least semiannually. For most effective results, sweeping should be preformed by a vacuum style truck in the early spring before spring rain events can wash silt and sediment into the stormwater system. Silt and sediment should be disposed of in accordance with local, state and federal guidelines for hazardous waste.

1.2.2 Drain Manholes

Manholes shall be inspected semi-annually for signs of wear, settling, cracking or other fatigue. Manhole casting should be inspected for signs of root intrusion, or significant water infiltration. Weirs shall be inspected for signs of cracking or other fatigue. Manhole sumps should be checked for silt /sediment buildup and cleaned as necessary. Cleaning should be performed by a vacuum truck. Manholes should be resealed as required and outlets should be inspected incidentally with all structure inspections.

1.2.3 Storm Drain Lines

Storm drainage inlets and outlets should be inspected incidentally with all structure inspections. Evidence of debris intrusion or excessive siltation or sedimentation could result in the need to clean a storm drain line. Flushing or jetting should be performed as required. All flushing and jetting should be performed in the direction away from any outlet devices. A vacuum truck should be used at the opposite end of the flushing or jetting to remove any silt or sediment that is cleaned from the storm drain.

1.2.4 Deep Sump Catch Basins

Deep sump catch basins shall be inspected at least semi-annually for signs of wear, settling, cracking or other fatigue. Catch basin castings should be inspected for signs of root intrusion, or significant water infiltration. Catch basin sump should be check for silt/sediment buildup and cleaned as necessary. Cleaning should be performed by a vacuum truck. Catch basins should be resealed as required and outlets should be inspected incidentally with all structure inspections.

1.2.5 Subsurface Infiltration Systems

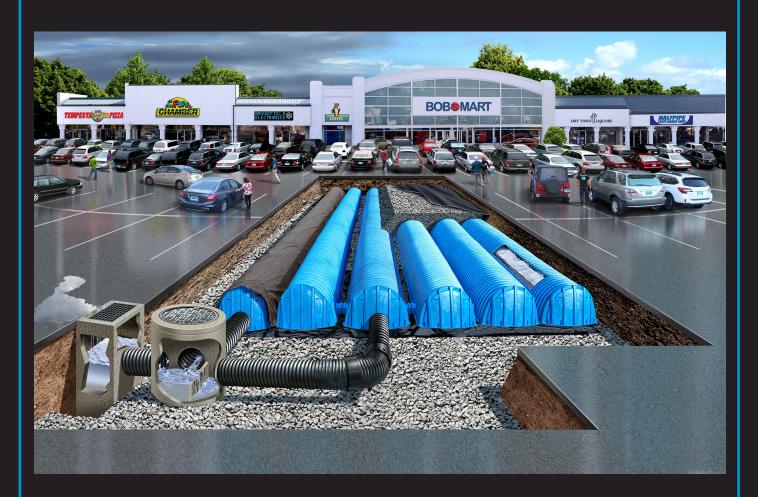
The subsurface infiltration systems should be monitored and maintained regularly to ensure no obstructions in the systems are present. Any depressions noticed in the areas could indicate that the system has collapsed and should be inspected immediately. The systems are equipped with inspection ports to monitor the buildup of sedimentation. If the depth of sedimentation is in excess of the manufacturer's guidelines, the systems will need to be cleaned out with high pressure water. The high-pressure water should be used on one end and a vacuum truck will be used on the opposite end to remove any silt or sediment that is cleaned from the chamber. Other maintenance will include checking the inlets and outlet for debris, survey the surrounding area for depressions and confirm no unauthorized modifications have been performed to the system. See Appendix A for the Cultec Operation and Maintenance Guidelines.

1.2.6 *Infiltration Basin*

The infiltration basis should be monitored and maintained regularly to ensure its proper functionality. Debris should be removed, and the bottom and insides slopes of the basin mowed per the schedule in the next section. The stone riprap inlet and emergency overflow weir should be inspected for signs of scour, erosion or settling. Excessive silt should be removed form the stone and any areas that have settled should be repaired.

The sediment forebay should be inspected yearly. The silt should be removed once the silt has been deposited such that the capacity of the forebay has been reduced by 1.3.

1.3 O&M Schedule


08	∝M Task	Monthly	Quarterly	Spring	Fall	2-years	As-required
1.	Street Sweeping			X	X		
2.	Drain Manholes						
	Inspect Rims			X	X		
	Inspect inside/inlet and outlet pipes			X	X		
	Remove sediment						X
2	Storm drain Lines		-				
3.	Inspection			*7	•		
	Clean			X	X		X
	Cieun						A
4.	Catch Basins						
	Inspect Rims			X	X		
	Inspect inside/inlet and outlet pipes			X	X		
	Remove sediment						X
5.	Subsurface Infiltration Systems	Inspected twice per year per the MSH (Refer to Appendix A & E)			SH		
6.	Infiltration Basin						
	Inspect			X			
	Remove Debris			X			X
	Mow bottom and inside slopes			X	X		
	Remove Silt from forebay		ļ				X
	Repair riprap		1				X

APPENDIX A

Cultec Operation & Maintenance Manual

CONTACTOR® & RECHARGER®

STORMWATER MANAGEMENT SOLUTIONS

OPERATION & MAINTENANCE GUIDELINES

FOR CULTEC STORMWATER MANAGEMENT SYSTEMS

OPERATIONS AND MAINTENANCE GUIDELINES

Published by

CULTEC, Inc.

P.O. Box 280 878 Federal Road Brookfield, Connecticut 06804 USA www.cultec.com

Copyright Notice

© 2019 CULTEC, Inc. All rights reserved. Printed in the USA.

This document and any accompanying CULTEC products are copyrighted by CULTEC, Inc. Any reproduction and/or distribution without prior written consent from CULTEC, Inc. is strictly prohibited.

Disclaimers:

The drawings, photographs and illustrations shown in this document are for illustrative purposes only and are not necessarily to scale.

Actual designs may vary.

CULTEC reserves the right to make design and/or specification changes at any time without notice at CULTEC's sole discretion.

CULTEC, the CULTEC logo, RECHARGER, CONTACTOR, HVLV, PAC, STORMFILTER, STORMGENIE and The Chamber with The Stripe are registered trademarks of CULTEC, Inc.

Chamber of Choice, HD, 100, 125, 150, 150XL, 180, 280, 330, 330XL, 360, V8, 902, Field Drain Panel, C-1, C-2, C-3, C-4, EZ-24, Landscape Series are trademarks of CULTEC, Inc. © Copyright on all drawings, illustrations, photos, charts - CULTEC, Inc. All rights reserved.

Protected by one or more of the following patents owned by Cultec, Inc.:

U.S. Patents 6,129,482; 6,322,288; 6,854,925; 7,226,241; 7,806,627; 8,366,346; 8,425,148; U.S. Designs D613,819; D638,095; D668,318; Canadian Patent 2,450,565; 2,591,255; Canadian Designs 129144; 135983; 159073; 160977; and/or other U.S. or Foreign Patent(s) or Patent(s) Pending.

Contact Information:

For general information on our other products and services, please contact our offices within the United States at (800)428-5832, (203)775-4416 ext. 202, or e-mail us at custservice@cultec.com.

For technical support, please call (203)775-4416 ext. 203 or e-mail tech@cultec.com.

Visit www.cultec.com/downloads.html for Product Downloads and CAD details.

Doc ID: CLT057 01-20

January 2020

These instructions are for single-layer traffic applications only. For multi-layer applications, contact CULTEC. All illustrations and photos shown herein are examples of typical situations. Be sure to follow the engineer's drawings. Actual designs may vary.

CULTEC STORMWATER CHAMBERS

This manual contains guidelines recommended by CULTEC, Inc. and may be used in conjunction with, but not to supersede, local regulations or regulatory authorities. OSHA Guidelines must be followed when inspecting or cleaning any structure.

Introduction

The CULTEC Subsurface Stormwater Management System is a high-density polyethylene (HDPE) chamber system arranged in parallel rows surrounded by washed stone. The CULTEC chambers create arch-shaped voids within the washed stone to provide stormwater detention, retention, infiltration, and reclamation. Filter fabric is placed between the native soil and stone interface to prevent the intrusion of fines into the system. In order to minimize the amount of sediment which may enter the CULTEC system, a sediment collection device (stormwater pretreatment device) is recommended upstream from the CULTEC chamber system. Examples of pretreatment devices include, but are not limited to, an appropriately sized catch basin with sump, pretreatment catchment device, oil grit separator, or baffled distribution box. Manufactured pretreatment devices may also be used in accordance with CULTEC chambers. Installation, operation, and maintenance of these devices shall be in accordance with manufacturer's recommendations. Almost all of the sediment entering the stormwater management system will be collected within the pretreatment device.

Best Management Practices allow for the maintenance of the preliminary collection systems prior to feeding the CULTEC chambers. The pretreatment structures shall be inspected for any debris that will restrict inlet flow rates. Outfall structures, if any, such as outlet control must also be inspected for any obstructions that would restrict outlet flow rates. OSHA Guidelines must be followed when inspecting or cleaning any structure.

Operation and Maintenance Requirements

I. Operation

CULTEC stormwater management systems shall be operated to receive only stormwater run-off in accordance with applicable local regulations. CULTEC subsurface stormwater management chambers operate at peak performance when installed in series with pretreatment. Pretreatment of suspended solids is superior to treatment of solids once they have been introduced into the system. The use of pretreatment is adequate as long as the structure is maintained and the site remains stable with finished impervious surfaces such as parking lots, walkways, and pervious areas are properly maintained. If there is to be an unstable condition, such as improvements to buildings or parking areas, all proper silt control measures shall be implemented according to local regulations.

II. Inspection and Maintenance Options

- A. The CULTEC system may be equipped with an inspection port located on the inlet row. The inspection port is a circular cast box placed in a rectangular concrete collar. When the lid is removed, a 6-inch (150 mm) pipe with a screw-in plug will be exposed. Remove the plug. This will provide access to the CULTEC Chamber row below. From the surface, through this access, the sediment may be measured at this location. A stadia rod may be used to measure the depth of sediment if any in this row. If the depth of sediment is in excess of 3 inches (76 mm), then this row should be cleaned with high pressure water through a culvert cleaning nozzle. This would be carried out through an upstream manhole or through the CULTEC StormFilter Unit (or other pretreatment device). CCTV inspection of this row can be deployed through this access port to deter mine if any sediment has accumulated in the inlet row.
- **B.** If the CULTEC bed is not equipped with an inspection port, then access to the inlet row will be through an upstream manhole or the CULTEC StormFilter.

1. Manhole Access

This inspection should only be carried out by persons trained in confined space entry and sewer inspection services. After the manhole cover has been removed a gas detector must be lowered into the manhole to ensure that there are not high concentrations of toxic gases present. The inspector should be lowered into the manhole with the proper safety equipment as per OSHA requirements. The inspector may be able to observe sediment from this location. If this is not possible, the inspector will need to deploy a CCTV robot to permit viewing of the sediment.

OPERATIONS AND MAINTENANCE GUIDELINES

2. StormFilter Access

Remove the manhole cover to allow access to the unit. Typically a 30-inch (750 mm) pipe is used as a riser from the StormFilter to the surface. As in the case with manhole access, this access point requires a technician trained in confined space entry with proper gas detection equipment. This individual must be equipped with the proper safety equipment for entry into the StormFilter. The technician will be lowered onto the StormFilter unit. The hatch on the unit must be removed. Inside the unit are two filters which may be removed according to StormFilter maintenance guidelines. Once these filters are removed the inspector can enter the StormFilter unit to launch the CCTV camera robot.

C. The inlet row of the CULTEC system is placed on a polyethylene liner to prevent scouring of the washed stone beneath this row. This also facilitates the flushing of this row with high pressure water through a culvert cleaning nozzle. The nozzle is deployed through a manhole or the StormFilter and extended to the end of the row. The water is turned on and the inlet row is back-flushed into the manhole or StormFilter. This water is to be removed from the manhole or StormFilter using a vacuum truck.

III. Maintenance Guidelines

The following guidelines shall be adhered to for the operation and maintenance of the CULTEC stormwater management system:

- **A.** The owner shall keep a maintenance log which shall include details of any events which would have an effect on the system's operational capacity.
- **B.** The operation and maintenance procedure shall be reviewed periodically and changed to meet site conditions.
- **C.** Maintenance of the stormwater management system shall be performed by qualified workers and shall follow applicable occupational health and safety requirements.
- **D.** Debris removed from the stormwater management system shall be disposed of in accordance with applicable laws and regulations.

IV. Suggested Maintenance Schedules

A. Minor Maintenance

The following suggested schedule shall be followed for routine maintenance during the regular operation of the stormwater system:

Frequency	Action
Monthly in first year	Check inlets and outlets for clogging and remove any debris, as required.
Spring and Fall	Check inlets and outlets for clogging and remove any debris, as required.
One year after commissioning and every third year following	Check inlets and outlets for clogging and remove any debris, as required.

B. Major Maintenance

The following suggested maintenance schedule shall be followed to maintain the performance of the CULTEC stormwater management chambers. Additional work may be necessary due to insufficient performance and other issues that might be found during the inspection of the stormwater management chambers. (See table on next page)

CULTEC STORMWATER CHAMBERS

	Frequency	Action
Inlets and Outlets	Every 3 years	Obtain documentation that the inlets, outlets and vents have been cleaned and will function as intended.
	Spring and Fall	Check inlet and outlets for clogging and remove any debris as required.
CULTEC Stormwater Chambers	2 years after commissioning	Inspect the interior of the stormwater management chambers through inspection port for deficiencies using CCTV or comparable technique.
		Obtain documentation that the stormwater management chambers and feed connectors will function as anticipated.
	9 years after commis- sioning every 9 years following	Clean stormwater management chambers and feed connectors of any debris.
		Inspect the interior of the stormwater management structures for deficiencies using CCTV or comparable technique.
		Obtain documentation that the stormwater management chambers and feed connectors have been cleaned and will function as intended.
	45 years after com- missioning	Clean stormwater management chambers and feed connectors of any debris.
		Determine the remaining life expectancy of the stormwater management chambers and recommended schedule and actions to rehabilitate the stormwater management chambers as required.
		Inspect the interior of the stormwater management chambers for deficiencies using CCTV or comparable technique.
		Replace or restore the stormwater management chambers in accordance with the schedule determined at the 45-year inspection.
		Attain the appropriate approvals as required.
		Establish a new operation and maintenance schedule.
Surrounding Site	Monthly in 1 st year	Check for depressions in areas over and surrounding the stormwater management system.
	Spring and Fall	Check for depressions in areas over and surrounding the stormwater management system.
	Yearly	Confirm that no unauthorized modifications have been performed to the site.

For additional information concerning the maintenance of CULTEC Subsurface Stormwater Management Chambers, please contact CULTEC, Inc. at 1-800-428-5832.

WQMP Operation & Maintenance (O&M) Plan

Project Name:				
	Prepared for:			
Project Name:				
Address:				
City, State Zip:				
	Prepared on:			
Date:				

CULTEC STORMWATER CHAMBERS

This O&M Plan describes the designated responsible party for implementation of this WQMP, including: operation and maintenance of all the structural BMP(s), conducting the training/educational program and duties, and any other necessary activities. The O&M Plan includes detailed inspection and maintenance requirements for all structural BMPs, including copies of any maintenance contract agreements, manufacturer's maintenance requirements, permits, etc.

8.1.1 Project Information

Project name	
Address	
City, State Zip	
Site size	
List of structural BMPs, number of each	
Other notes	

8.1.2 Responsible Party

The responsible party for implementation of this WQMP is:

Name of Person or HOA Property Manager	
Address	
City, State Zip	
Phone number	
24-Hour Emergency Contact number	
Email	

8.1.3 Record Keeping

Parties responsible for the O&M plan shall retain records for at least 5 years.

All training and educational activities and BMP operation and maintenance shall be documented to verify compliance with this O&M Plan. A sample Training Log and Inspection and Maintenance Log are included in this document.

8.1.4 Electronic Data Submittal

This document along with the Site Plan and Attachments shall be provided in PDF format. AutoCAD files and/or GIS coordinates of BMPs shall also be submitted to the City.

OPERATIONS AND MAINTENANCE GUIDELINES

App	end	İХ	

BMP SITE PLAN

Site plan is preferred on minimum 11" by 17" colored sheets, as long as legible.

CULTEC STORMWATER CHAMBERS

BMP OPERATION & MAINTENANCE LOG

Project Name:	
Today's Date:	
Name of Person Performing Activity (Printed	d):
Signature:	
BMP Name (As Shown in O&M Plan)	Brief Description of Implementation, Maintenance, and Inspection Activity Performed

Minor Maintenance

Frequency		Action		
Monthly in	first year	Check inlets and outlets for clogging and remove any debris, as required.		
		Notes		
□ Month 1	Date:			
□ Month 2	Date:			
□ Month 3	Date:			
□ Month 4	Date			
□ Month 5	Date:			
□ Month 6	Date:			
□ Month 7	Date:			
□ Month 8	Date:			
□ Month 9	Date:			
□ Month 10	Date:			
□ Month 11	Date:			
□ Month 12	Date:			
Spring and	Fall	Check inlets and outlets for clogging and remove any debris, as required.		
		Notes		
□ Spring	Date:			
□ Fall	Date:			
□ Spring	Date:			
□ Fall	Date:			
□ Spring	Date:			
□ Fall	Date:			
□ Spring	Date:			
□ Fall	Date:			
□ Spring	Date:			
□ Fall	Date:			
□ Spring	Date:			
□ Fall	Date:			
	fter commissioning	Check inlets and outlets for clogging and remove any debris, as required.		
	third year following	Notes		
□ Year 1	Date:			
□ Year 4	Date:			
□ Year 7	Date:			
□ Year 10	Date:			
□ Year 13	Date:			
□ Year 16	Date:			
□ Year 19	Date:			
□ Year 22	Date:			

Major Maintenance

	Frequency		Action
	Every 3 years		Obtain documentation that the inlets, outlets and vents have been cleaned and will function as intended.
		T	Notes
	□ Year 1	Date:	
	□ Year 4	Date:	
	□ Year 7	Date:	
	□ Year 10	Date:	
	□ Year 13	Date:	
रे	□ Year 16	Date:	
T e	□ Year 19	Date:	
Inlets and Outlets	Spring and Fall	Date:	Check inlet and outlets for clogging and remove any debris, as required.
et	□ Spring	Date:	Notes
ļ Ā		Date:	
		Date:	
	□ Spring □ Fall		_
	□ Spring	Date:	
		Date:	
	□ Spring	Date:	
		Date:	
	□ Spring	Date:	
	□ Fall	Date:	
	□ Spring	Date:	
	□ Fall	Date:	
nbers		commissioning	☐ Inspect the interior of the stormwater management chambers through inspection port for deficiencies using CCTV or comparable technique.
r Char	r Chan		 Obtain documentation that the stormwater management chambers and feed connectors will function as anticipated.
ate		1	Notes
CULTEC Stormwater Chambers	□ Year 2	Date:	

Major Maintenance

	Frequency		Action
	9 years after cor		Clean stormwater management chambers and feed connectors of any debris.
		-	☐ Inspect the interior of the stormwater management structures for deficiencies using CCTV or comparable technique.
			□ Obtain documentation that the stormwater management chambers and feed connectors have been cleaned and will function as intended.
			Notes
	□ Year 9	Date:	
	□ Year 18	Date:	
	□ Year 27	Date:	
bers	□ Year 36	Date:	
Chaml	45 years after commissioning		Clean stormwater management chambers and feed connectors of any debris.
CULTEC Stormwater Chambers			□ Determine the remaining life expectancy of the stormwater management chambers and recommended schedule and actions to rehabilitate the stormwater management chambers as required.
EC Stor			□ Inspect the interior of the stormwater management chambers for deficiencies using CCTV or comparable technique.
CULT			$\hfill \square$ Replace or restore the stormwater management chambers in accordance with the schedule determined at the 45-year inspection.
			□ Attain the appropriate approvals as required.
			□ Establish a new operation and maintenance schedule.
			Notes
	□ Year 45	Date:	

12

Major Maintenance

	Frequency		Action	
	Monthly in 1 st year		 Check for depressions in areas over and surrounding the stormwater management system. 	
	M. II. d	Ts.:	Notes	
	□ Month 1	Date:		
	□ Month 2	Date:		
	□ Month 3	Date:		
	□ Month 4	Date:		
	□ Month 5	Date:		
	□ Month 6	Date:		
	□ Month 7	Date:		
	□ Month 8	Date:		
	□ Month 9	Date:		
	□ Month 10	Date:		
	□ Month 11	Date:		
	□ Month 12	Date:		
	Spring and Fall		□ Check for depressions in areas over and surrounding the stormwater management system.	
ite			Notes	
Surrounding Site	□ Spring	Date:		
Ë	□ Fall	Date:		
Ĕ	□ Spring	Date:		
, Č	□ Fall	Date:		
Sui	□ Spring	Date:		
	□ Fall	Date:		
	□ Spring	Date:		
	□ Fall	Date:		
	□ Spring	Date:		
	□ Fall	Date:		
	□ Spring	Date:		
	□ Fall	Date:		
	Yearly		□ Confirm that no unauthorized modifications have been performed to the site.	
			Notes	
	□ Year 1	Date:		
	□ Year 2	Date:		
	□ Year 3	Date:		
	□ Year 4	Date:		
	□ Year 5	Date:		
	□ Year 6	Date:		
	□ Year 7	Date:		

13

CULTEC, Inc.

878 Federal Road • P.O. Box 280 • Brookfield, CT 06804 USA P: (203) 775-4416 • Toll Free: 1(800) 4-CULTEC • www.cultec.com

APPENDIX B

Stormwater Management System Owners/Operators

- 1. Stormwater Management System Owners: To be determined
- 2. Current and future operators: To be determined
- 3. Emergency contact information: To be determined
- 4. Change of trustee: To be determined
- 5. Financial Responsible Party: To be determined
- 6. Routine Maintenance: To be determined
- 7. O&M activities: To be determined
- 8. Record keeping To be determined

APPENDIX H

Long Term Pollution Prevention Plan

LONG-TERM POLLUTION PREVENTION PLAN

Mallard Lane

BOLTON, MASSACHUSETTS

Prepared For: James Morin

307 CENTRAL STREET, APT. 331

BOLTON, MA

Prepared By: DILLIS & ROY CIVIL DESIGN GROUP, INC

1 Main Street, Suite 1 Lunenburg, MA 01462

Rev. February 28, 2022 December 1st, 2021 5293

1.0 Summary

This Long-Term Pollution Prevention Plan (LTPPP) has been prepared by Dillis & Roy Civil Design Group, Inc. pursuant to the Massachusetts Stormwater Regulations. The proposed project includes the development of 11 age restricted homes with an associated road and cul-de-sac. The work will reduce the stormwater runoff and improve stormwater treatment through the installation of stormwater BMP's.

Care has been taken to lay out the proposed site in a manner that works with the existing topography. The stormwater management system has been designed in accordance with the Massachusetts Stormwater Regulations to provide pretreatment of the stormwater prior to discharge.

2.0 Spill Prevention Plan

No hazardous materials other than normal cleaning items are expected to be stored on site after the construction period has ended.

It is expected that normal DEP notification procedures would be triggered for major spills such as heating oil or propane and natural gas leaks.

3.0 Stormwater System O&M

A Stormwater Operation & Maintenance plan has been prepared for the proposed stormwater management system. Refer to this document for details pertaining to the required inspections, routine maintenance and operation details including erosion stabilization.

4.0 Fertilizers, herbicides and pesticides

Application of fertilizer, herbicides and pesticides shall be performed in a manner consistent with the industry standards for the application.

No application of chemicals is to be performed within the stormwater management areas on the site.

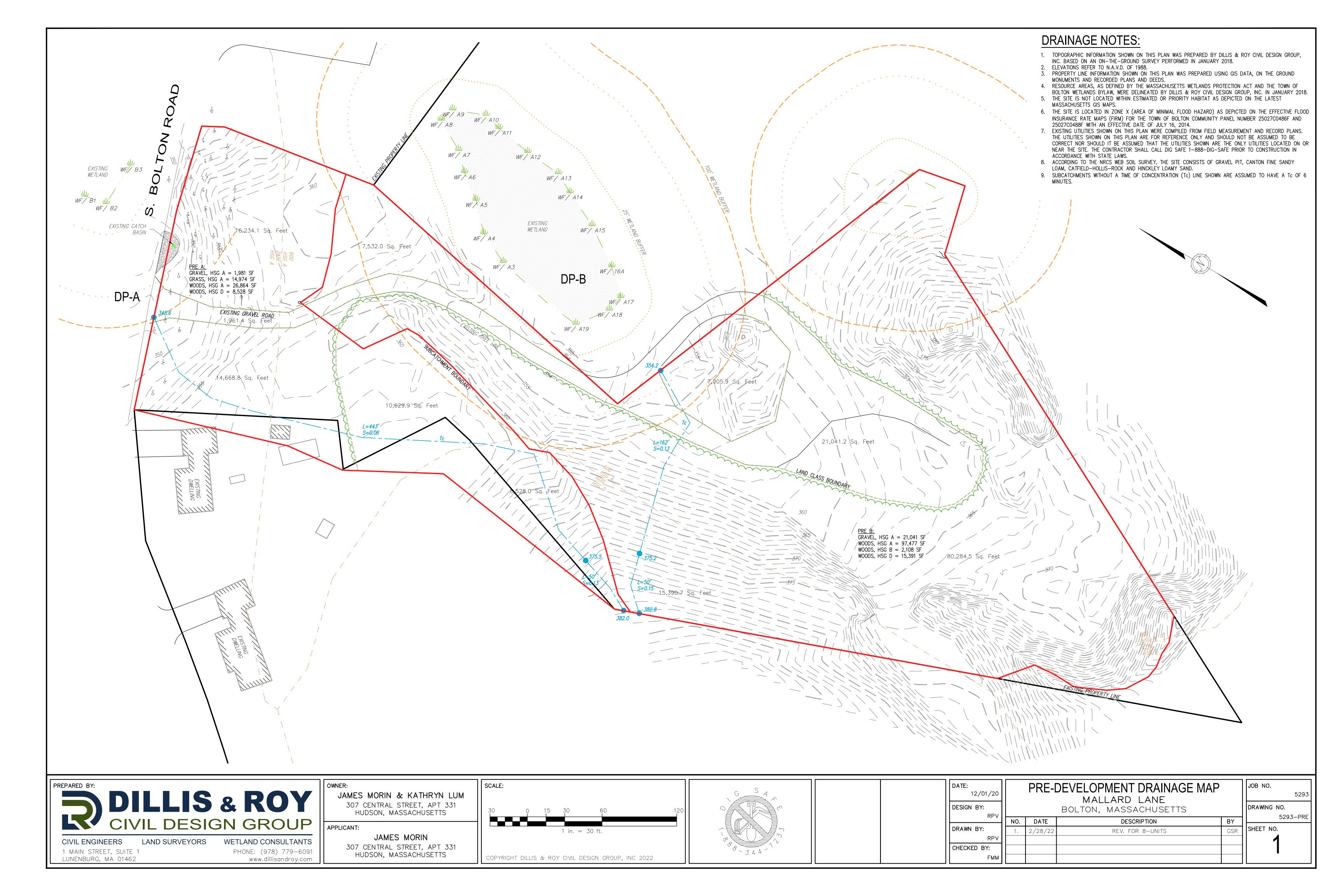
5.0 Snow/Salt Management

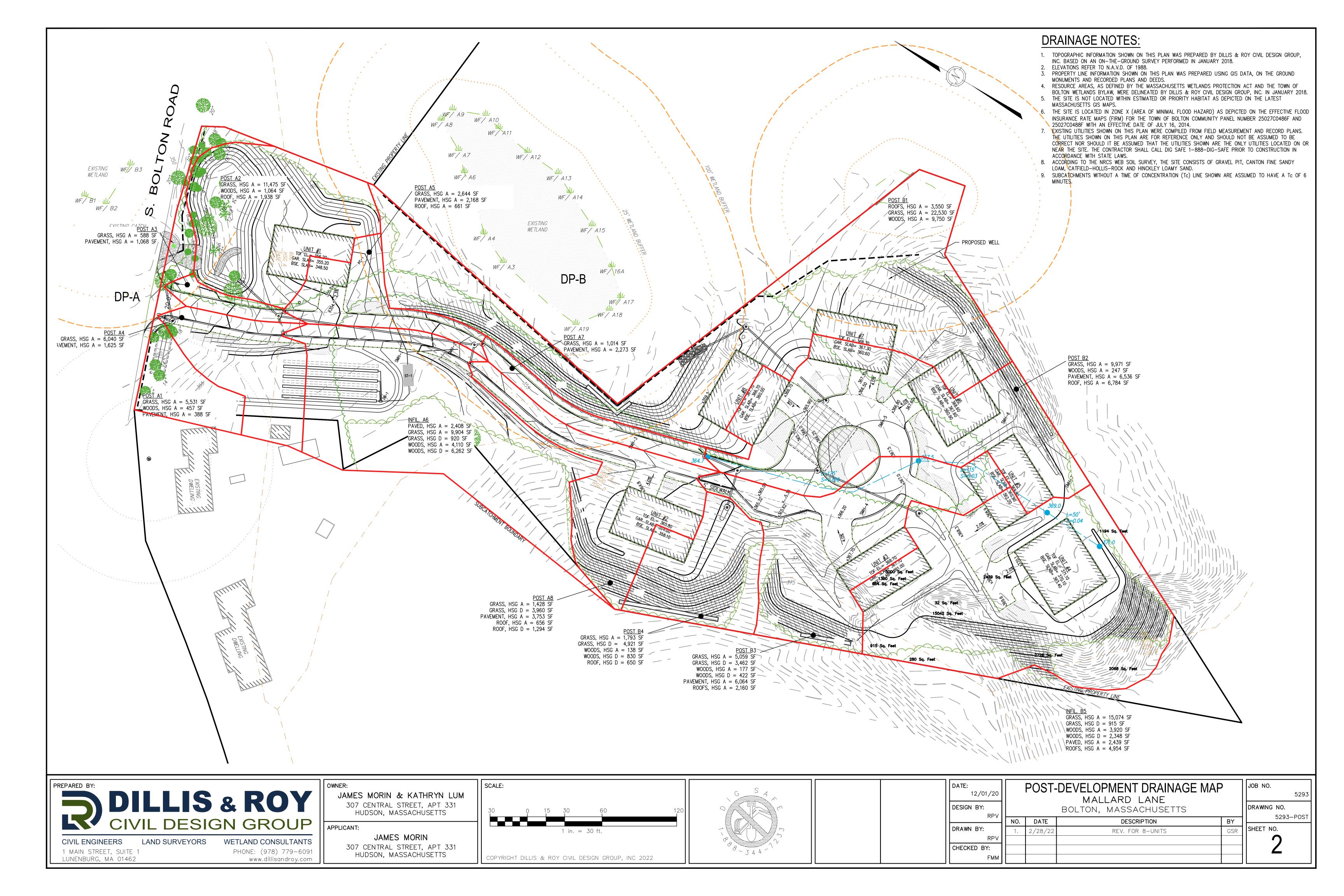
5.1 Snow Plowing

It is expected that the site will be plowed by town or private personnel. Snow storage will be as far from the wetland resource area to the maximum extent practical.

5.2 Salt/Sand Usage

It is expected that sanding and salting will be performed on an infrequent basis during times when unusually icy conditions persist for periods of time.


5.3 Street Sweeping


The Stormwater Operation & Maintenance Plan calls for the proposed road to be swept in the spring, after the threat of winter precipitation has passed, and in the fall.

6.0 Waste Management

6.1 Solid Waste

A dumpster will be located on the site during construction. Each house will have their own trash containers post construction. These areas will be the primary area for the on-site storage of solid waste prior to pick-up by a waste management company.

